Formal specification and verification of vehicular handoff using π-calculus

Jayaraj Poroor, B. Jayaraman
{"title":"Formal specification and verification of vehicular handoff using π-calculus","authors":"Jayaraj Poroor, B. Jayaraman","doi":"10.1145/2185216.2185268","DOIUrl":null,"url":null,"abstract":"Vehicular networking is an important emerging area having immense applications, ranging from road-safety to emergency communications in disaster situations. As more applications begin to take advantage of vehicular networks, correctness of the underlying protocols must be subjected to rigorous analysis. The π-calculus is a formal language for specifying mobile systems and has been applied in wide range of settings, from specifying security protocols to modeling biomolecular systems. In this paper, we use π-calculus to construct a formal specification of a cross-layer dual-radio handoff algorithm for vehicular networks. The main challenge in this work was to use the minimal set of highly expressive and powerful constructs of π-calculus to model protocol agents at the right level of abstraction. To give two instances of our approach: (a) the two radios involved in handoff are modelled as concurrent sub-processes of the mobile node process; (b) route to the gateway is modelled as a channel that the access point supplies to both the gateway and the mobile node, both of which are modelled as concurrent processes. We formulate representative properties in a branching-time temporal logic and verify our protocol specification against these properties. Our study shows that π-calculus is a suitable formalism for modeling and verifying vehicular protocols.","PeriodicalId":180836,"journal":{"name":"International Conference on Wireless Technologies for Humanitarian Relief","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Wireless Technologies for Humanitarian Relief","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2185216.2185268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Vehicular networking is an important emerging area having immense applications, ranging from road-safety to emergency communications in disaster situations. As more applications begin to take advantage of vehicular networks, correctness of the underlying protocols must be subjected to rigorous analysis. The π-calculus is a formal language for specifying mobile systems and has been applied in wide range of settings, from specifying security protocols to modeling biomolecular systems. In this paper, we use π-calculus to construct a formal specification of a cross-layer dual-radio handoff algorithm for vehicular networks. The main challenge in this work was to use the minimal set of highly expressive and powerful constructs of π-calculus to model protocol agents at the right level of abstraction. To give two instances of our approach: (a) the two radios involved in handoff are modelled as concurrent sub-processes of the mobile node process; (b) route to the gateway is modelled as a channel that the access point supplies to both the gateway and the mobile node, both of which are modelled as concurrent processes. We formulate representative properties in a branching-time temporal logic and verify our protocol specification against these properties. Our study shows that π-calculus is a suitable formalism for modeling and verifying vehicular protocols.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
车辆切换的π微积分形式化规范与验证
车联网是一个重要的新兴领域,具有广泛的应用,从道路安全到灾害情况下的应急通信。随着越来越多的应用开始利用车载网络,必须对底层协议的正确性进行严格的分析。π微积分是一种用于指定移动系统的形式语言,已经广泛应用于从指定安全协议到建模生物分子系统的各种设置中。本文利用π微积分构造了车辆网络跨层双无线电切换算法的形式化规范。这项工作的主要挑战是使用π-演算的高表现力和强大的结构的最小集合来在适当的抽象层次上对协议代理进行建模。给出我们方法的两个实例:(a)将涉及切换的两个无线电建模为移动节点进程的并发子进程;(b)到网关的路由被建模为接入点向网关和移动节点提供的通道,两者被建模为并发进程。我们在分支时间时态逻辑中制定了代表性属性,并根据这些属性验证了我们的协议规范。研究表明π微积分是一种适合于车辆协议建模和验证的形式化方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A simultaneous routing and localization algorithm for wireless sensor networks in emergency scenario Monitoring Schumann resonance and other electromagnetic precursors of an earthquake with a virtual MIMO wireless sensor network Some comments on wireless sensor networks for natural hazards KARSHIK: agricultural information monitoring and reference based on wireless networks Robust RF fingerprinting techniques in 4G networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1