M. Narihiro, T. Iwamoto, T. Yamamoto, T. Ikezawa, K. Yako, M. Tanaka, A. Mineji, Y. Okuda, K. Uejima, S. Shishiguchi, M. Hane
{"title":"Sub-30nm Mosfet Fabrication Technology Incorporating Precise Dopant Profile Design using Diffusion-Less High-Activation Laser Annealing","authors":"M. Narihiro, T. Iwamoto, T. Yamamoto, T. Ikezawa, K. Yako, M. Tanaka, A. Mineji, Y. Okuda, K. Uejima, S. Shishiguchi, M. Hane","doi":"10.1109/RTP.2006.367995","DOIUrl":null,"url":null,"abstract":"Sub-30nm MOSFET fabrication technology is proposed based on a dedicated process redesign suitable for a non-melt laser annealing technique. Two major features of the laser annealing (LA), i.e. diffusion-less and higher dopant activation enable us to apply more elaborate channel engineering, involving multiple halo implantations and optimized gate-predoping, that contributes further scaling of a functional gate-length (Lg) and effective gate-insulator thickness (Tinv), maintaining sufficient current drivability prior to any local stress engineering applied, for instance, ION = 650/340 [muA/mum] (nMOS/pMOS) at IOFF = 100 nA/mum, Vdd = 0.9V, were obtained for sub-30nm Lg (and also sidewall length) devices","PeriodicalId":114586,"journal":{"name":"2006 14th IEEE International Conference on Advanced Thermal Processing of Semiconductors","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 14th IEEE International Conference on Advanced Thermal Processing of Semiconductors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTP.2006.367995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Sub-30nm MOSFET fabrication technology is proposed based on a dedicated process redesign suitable for a non-melt laser annealing technique. Two major features of the laser annealing (LA), i.e. diffusion-less and higher dopant activation enable us to apply more elaborate channel engineering, involving multiple halo implantations and optimized gate-predoping, that contributes further scaling of a functional gate-length (Lg) and effective gate-insulator thickness (Tinv), maintaining sufficient current drivability prior to any local stress engineering applied, for instance, ION = 650/340 [muA/mum] (nMOS/pMOS) at IOFF = 100 nA/mum, Vdd = 0.9V, were obtained for sub-30nm Lg (and also sidewall length) devices