FPB-UNet++: Semantic Segmentation for Remote Sensing Images of reservoir area via Improved UNet++ with FPN

Kaiyue Wang, Xiaoye Fan, Q. Wang
{"title":"FPB-UNet++: Semantic Segmentation for Remote Sensing Images of reservoir area via Improved UNet++ with FPN","authors":"Kaiyue Wang, Xiaoye Fan, Q. Wang","doi":"10.1145/3529466.3529483","DOIUrl":null,"url":null,"abstract":"In order to improve the accuracy of semantic segmentation of remote sensing images in the reservoir area, this paper improves UNet ++, and proposes a UNet ++ semantic segmentation network model fused with feature pyramid network, called FPB-UNet ++. First, in order to fully extract the semantic information of different scales and enhance the recovery ability of the spatial information of remote sensing images, this paper uses the improved feature pyramid structure as the basic unit of the UNet ++ coding structure. Then, the pooling of position information will be lost between each coding unit To remove the layer, use convolution instead. Finally, in order to make full use of multi-scale feature information in the multi-sided output part, all the side output feature maps are stitched and fused in the channel dimension. Through experiments on the open and self-built remote sensing image semantic segmentation data set of Xiaolangdi Reservoir area, the results show that the network model has a good segmentation effect on feature information.","PeriodicalId":375562,"journal":{"name":"Proceedings of the 2022 6th International Conference on Innovation in Artificial Intelligence","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 6th International Conference on Innovation in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3529466.3529483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In order to improve the accuracy of semantic segmentation of remote sensing images in the reservoir area, this paper improves UNet ++, and proposes a UNet ++ semantic segmentation network model fused with feature pyramid network, called FPB-UNet ++. First, in order to fully extract the semantic information of different scales and enhance the recovery ability of the spatial information of remote sensing images, this paper uses the improved feature pyramid structure as the basic unit of the UNet ++ coding structure. Then, the pooling of position information will be lost between each coding unit To remove the layer, use convolution instead. Finally, in order to make full use of multi-scale feature information in the multi-sided output part, all the side output feature maps are stitched and fused in the channel dimension. Through experiments on the open and self-built remote sensing image semantic segmentation data set of Xiaolangdi Reservoir area, the results show that the network model has a good segmentation effect on feature information.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
fpb - un++:基于FPN改进un++的库区遥感图像语义分割
为了提高库区遥感图像语义分割的精度,本文对unet++进行了改进,提出了一种融合特征金字塔网络的unet++语义分割网络模型fpb - unet++。首先,为了充分提取不同尺度的语义信息,增强遥感图像空间信息的恢复能力,本文采用改进的特征金字塔结构作为UNet ++编码结构的基本单元。然后,每个编码单元之间的位置信息池将丢失。为了去除该层,使用卷积代替。最后,为了充分利用多边路输出部分的多尺度特征信息,在通道维度上对所有边路输出特征图进行缝合融合。通过对小郎地库区开放和自建遥感图像语义分割数据集的实验,结果表明,该网络模型对特征信息具有良好的分割效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DGIC: A Distributed Graph Inference Computing Framework Suitable For Encoder-Decoder GNN Transformer-based Question Text Generation in the Learning System ECA-CBAM: Classification of Diabetic Retinopathy: Classification of diabetic retinopathy by cross-combined attention mechanism Speech Emotion Recognition Exploiting ASR-based and Phonological Knowledge Representations Heterogeneous Collaborative Refining for Real-Time End-to-End Image-Text Retrieval System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1