A neural-network approach to modeling and analysis

Chen-Yuan Chen, Cheng-Wu Chen, W. Chiang, Jing-Dong Hwang
{"title":"A neural-network approach to modeling and analysis","authors":"Chen-Yuan Chen, Cheng-Wu Chen, W. Chiang, Jing-Dong Hwang","doi":"10.1109/TAI.2002.1180843","DOIUrl":null,"url":null,"abstract":"A backpropagation network can always be used in modeling. This study is concerned with the stability problem of a neural network (NN) system which consists of a few subsystems represented by NN models. In this paper, the dynamics of each NN model is converted into linear inclusion representation. Subsequently, based on the representations, the stability conditions in terms of Lyapunov's direct method is derived to guarantee the asymptotic stability of NN systems.","PeriodicalId":197064,"journal":{"name":"14th IEEE International Conference on Tools with Artificial Intelligence, 2002. (ICTAI 2002). Proceedings.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"14th IEEE International Conference on Tools with Artificial Intelligence, 2002. (ICTAI 2002). Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.2002.1180843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A backpropagation network can always be used in modeling. This study is concerned with the stability problem of a neural network (NN) system which consists of a few subsystems represented by NN models. In this paper, the dynamics of each NN model is converted into linear inclusion representation. Subsequently, based on the representations, the stability conditions in terms of Lyapunov's direct method is derived to guarantee the asymptotic stability of NN systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
建模和分析的神经网络方法
反向传播网络总是可以用于建模。本文研究由神经网络模型表示的若干子系统组成的神经网络系统的稳定性问题。在本文中,每个神经网络模型的动态被转换成线性包含表示。在此基础上,导出了用Lyapunov直接方法表示的稳定性条件,以保证神经网络系统的渐近稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Machine learning for software engineering: case studies in software reuse Active tracking and cloning of facial expressions using spatio-temporal information Fusing cooperative technical-specification knowledge components Ontology construction for information selection An intelligent brokering system to support multi-agent Web-based 4/sup th/-party logistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1