Do ads compete or collaborate?: designing click models with full relationship incorporated

Xin Xin, Irwin King, Ritesh Agrawal, Michael R. Lyu, Heyan Huang
{"title":"Do ads compete or collaborate?: designing click models with full relationship incorporated","authors":"Xin Xin, Irwin King, Ritesh Agrawal, Michael R. Lyu, Heyan Huang","doi":"10.1145/2396761.2398528","DOIUrl":null,"url":null,"abstract":"Traditionally click models predict click-through rate (CTR) of an advertisement (ad) independent of other ads. Recent researches however indicate that the CTR of an ad is dependent on the quality of the ad itself but also of the neighboring ads. Using historical click-through data of a commercially available ad server, we identify two types (competing and collaborating) of influences among sponsored ads and further propose a novel click-model, Full Relation Model (FRM), which explicitly models dependencies between ads. On a test data, FRM shows significant improvement in CTR prediction as compared to earlier click models.","PeriodicalId":313414,"journal":{"name":"Proceedings of the 21st ACM international conference on Information and knowledge management","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st ACM international conference on Information and knowledge management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2396761.2398528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Traditionally click models predict click-through rate (CTR) of an advertisement (ad) independent of other ads. Recent researches however indicate that the CTR of an ad is dependent on the quality of the ad itself but also of the neighboring ads. Using historical click-through data of a commercially available ad server, we identify two types (competing and collaborating) of influences among sponsored ads and further propose a novel click-model, Full Relation Model (FRM), which explicitly models dependencies between ads. On a test data, FRM shows significant improvement in CTR prediction as compared to earlier click models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
广告是竞争还是合作?:设计包含完整关系的点击模型
传统的点击模型预测广告(广告)的点击率(CTR)独立于其他广告。然而,最近的研究表明,广告的点击率不仅取决于广告本身的质量,还取决于邻近广告的质量。使用商业广告服务器的历史点击率数据,我们确定了赞助广告之间的两种类型(竞争和协作)的影响,并进一步提出了一种新的点击模型,全关系模型(FRM)。在测试数据上,与早期的点击模型相比,FRM在点击率预测方面显示出显着的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting web search success with fine-grained interaction data User activity profiling with multi-layer analysis Search result presentation based on faceted clustering Domain dependent query reformulation for web search CrowdTiles: presenting crowd-based information for event-driven information needs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1