Milling Simulation-Based Method to Evaluate Manufacturability of Machine Parts

M. Inui, Tong Zhang, Nobuyuki Umezu
{"title":"Milling Simulation-Based Method to Evaluate Manufacturability of Machine Parts","authors":"M. Inui, Tong Zhang, Nobuyuki Umezu","doi":"10.1115/detc2020-22124","DOIUrl":null,"url":null,"abstract":"\n The designers of mechanical products are generally not experts in machining. Therefore, they often design parts with inherent machining difficulties. Although various design for manufacturability tools have been developed to avoid such problems, their use in practice remains limited due to their lack of versatility. We develop a novel piece of software that can automatically detect difficult-to-machine shapes in a part. Using this software, the designer can determine which shapes are difficult to produce using conventional cutting by themselves, and can modify the shape on the spot. In the Internet-based part manufacturing business, the same software can be used to check whether the given part can be produced using the standard milling operations predetermined in a company. Our system is based on “milling simulation”. It detects any shapes that cannot be produced using the prepared cutting tools by executing the milling simulations with the tools, and then visualizing shapes that remain unmachined after all simulations. In this study, the acceleration of the processing is realized using graphics processing unit technology, and it is possible to extract difficult-to-machine shapes in several minutes using a standard PC.","PeriodicalId":131252,"journal":{"name":"Volume 6: 25th Design for Manufacturing and the Life Cycle Conference (DFMLC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 6: 25th Design for Manufacturing and the Life Cycle Conference (DFMLC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2020-22124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The designers of mechanical products are generally not experts in machining. Therefore, they often design parts with inherent machining difficulties. Although various design for manufacturability tools have been developed to avoid such problems, their use in practice remains limited due to their lack of versatility. We develop a novel piece of software that can automatically detect difficult-to-machine shapes in a part. Using this software, the designer can determine which shapes are difficult to produce using conventional cutting by themselves, and can modify the shape on the spot. In the Internet-based part manufacturing business, the same software can be used to check whether the given part can be produced using the standard milling operations predetermined in a company. Our system is based on “milling simulation”. It detects any shapes that cannot be produced using the prepared cutting tools by executing the milling simulations with the tools, and then visualizing shapes that remain unmachined after all simulations. In this study, the acceleration of the processing is realized using graphics processing unit technology, and it is possible to extract difficult-to-machine shapes in several minutes using a standard PC.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于铣削仿真的机械零件可制造性评价方法
机械产品的设计者一般都不是机械加工方面的专家。因此,他们经常设计具有固有加工困难的零件。尽管已经开发了各种可制造性工具的设计来避免这些问题,但由于缺乏通用性,它们在实践中的使用仍然受到限制。我们开发了一种新颖的软件,可以自动检测零件中难以加工的形状。利用该软件,设计师可以自行确定哪些形状难以用常规切割方式生产,并可以现场修改形状。在基于互联网的零件制造业务中,可以使用相同的软件来检查是否可以使用公司预定的标准铣削操作来生产给定的零件。我们的系统是基于“铣削模拟”。它通过使用刀具执行铣削模拟来检测任何无法使用准备好的切削工具生产的形状,然后在所有模拟后将未加工的形状可视化。在本研究中,使用图形处理单元技术实现了处理的加速,并且可以在几分钟内使用标准PC提取难以加工的形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Monitoring Method for Laser Via Hole Processing of Printed Circuit Boards Based on Two-Color Method With a High-Speed Video Camera Alignment of a Collaborative Resistance Model With a Change Management Process in Industry: A Case Study on Production Automation Design of Passive Lower Limb Exoskeleton to Aid in Injury Mitigation and Muscular Efficiency Machine-Specific Energy Estimation Using the Unit Process Life Cycle Inventory (UPLCI) Model A Life Cycle Analysis of Laser Cutter Embodied Impacts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1