Experimental Study of Mixing of Two-Layer Density-Stratified Fluid by a Vortex Ring

Lile Cao, R. Ito, T. Degawa, Y. Matsuda, K. Takamure, T. Uchiyama
{"title":"Experimental Study of Mixing of Two-Layer Density-Stratified Fluid by a Vortex Ring","authors":"Lile Cao, R. Ito, T. Degawa, Y. Matsuda, K. Takamure, T. Uchiyama","doi":"10.1115/ajkfluids2019-4972","DOIUrl":null,"url":null,"abstract":"\n This study experimentally investigates the mixing of a two-layer density-stratified fluid of water (upper layer) and aqueous sodium chloride (NaCl) solution (lower layer) induced by the interaction between a vortex ring and the density interface. The vortex ring, which consists of water, is launched from an orifice in the upper layer toward the density interface, after which its motion, along with the behavior of the lower fluid, is visualized through a planar laser-induced fluorescence method. The Atwood number that expresses the nondimensional density jump across the density interface is set at 0.0055, and the Reynolds number Re of the vortex ring is varied from 2050 to 3070. The visualization experiment clarifies that the vortex ring penetrating the density interface is bounced while collapsing in the lower fluid. Furthermore, it elucidates that the bounced upper fluid entrains the lower fluid into the upper layer by inducing a second vortex ring consisting of the lower fluid. Thus, this study reveals the effect of Re on the mixing of the upper and lower fluid induced by the launched vortex ring.","PeriodicalId":322380,"journal":{"name":"Volume 5: Multiphase Flow","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5: Multiphase Flow","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ajkfluids2019-4972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This study experimentally investigates the mixing of a two-layer density-stratified fluid of water (upper layer) and aqueous sodium chloride (NaCl) solution (lower layer) induced by the interaction between a vortex ring and the density interface. The vortex ring, which consists of water, is launched from an orifice in the upper layer toward the density interface, after which its motion, along with the behavior of the lower fluid, is visualized through a planar laser-induced fluorescence method. The Atwood number that expresses the nondimensional density jump across the density interface is set at 0.0055, and the Reynolds number Re of the vortex ring is varied from 2050 to 3070. The visualization experiment clarifies that the vortex ring penetrating the density interface is bounced while collapsing in the lower fluid. Furthermore, it elucidates that the bounced upper fluid entrains the lower fluid into the upper layer by inducing a second vortex ring consisting of the lower fluid. Thus, this study reveals the effect of Re on the mixing of the upper and lower fluid induced by the launched vortex ring.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
涡旋环混合两层密度分层流体的实验研究
实验研究了两层密度分层的水(上层)和氯化钠水溶液(下层)在密度界面和涡流环相互作用下的混合。由水组成的漩涡环从上层的一个孔向密度界面发射,之后它的运动,以及下层流体的行为,通过平面激光诱导荧光方法被可视化。表示密度界面上无量纲密度跳跃的阿特伍德数设为0.0055,涡流环的雷诺数Re在2050 ~ 3070之间变化。可视化实验表明,穿透密度界面的涡流环在下层流体中是弹跳的。此外,还阐明了反弹的上层流体通过诱导由下层流体组成的第二涡环将下层流体夹带到上层。因此,本研究揭示了Re对发射涡环引起的上下流体混合的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Transient Approach for Estimating Concentration of Water Droplets in Oil and Corrosion Assessment in the Oil and Gas Industry Effect of Interstage Injection on Compressor Flow Characteristic Air Entrainment and Bubble Generation by a Hydrofoil in a Turbulent Channel Flow Experimental Study of Bubble-Droplet Interactions in Improved Primary Oil Separation Effects of Liquid Viscosity on Laser-Induced Shock Dynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1