ECG Signal Anomaly Detection Algorithm Based on CNN-BiLSTM

K. X. Cui, Xiaojun Xia
{"title":"ECG Signal Anomaly Detection Algorithm Based on CNN-BiLSTM","authors":"K. X. Cui, Xiaojun Xia","doi":"10.1109/ICTech55460.2022.00046","DOIUrl":null,"url":null,"abstract":"Aiming at the problems of low feature extraction efficiency and low detection accuracy of traditional ECG signal detection algorithms, this paper proposes a convolutional neural network (CNN) and bi-directional long short-term memory (Bi-directional long short-term memory, LSTM) network hybrid ECG signal anomaly detection algorithm. This model effectively utilizes the ability of CNN to automatically extract features and BiLSTM's ability to efficiently process time series data. Through experimental verification on the arrhythmia data set in the MIT -BIH database, the overall accuracy of the model is 98.56%. Compared with support vector machine (SVM) and bidirectional long short-term memory neural network (BiLSTM), the accuracy and F1 value of this model are improved.","PeriodicalId":290836,"journal":{"name":"2022 11th International Conference of Information and Communication Technology (ICTech))","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 11th International Conference of Information and Communication Technology (ICTech))","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTech55460.2022.00046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Aiming at the problems of low feature extraction efficiency and low detection accuracy of traditional ECG signal detection algorithms, this paper proposes a convolutional neural network (CNN) and bi-directional long short-term memory (Bi-directional long short-term memory, LSTM) network hybrid ECG signal anomaly detection algorithm. This model effectively utilizes the ability of CNN to automatically extract features and BiLSTM's ability to efficiently process time series data. Through experimental verification on the arrhythmia data set in the MIT -BIH database, the overall accuracy of the model is 98.56%. Compared with support vector machine (SVM) and bidirectional long short-term memory neural network (BiLSTM), the accuracy and F1 value of this model are improved.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于CNN-BiLSTM的心电信号异常检测算法
针对传统心电信号检测算法特征提取效率低、检测精度低等问题,本文提出了一种卷积神经网络(CNN)与双向长短期记忆(bi-directional long short-term memory, LSTM)网络混合的心电信号异常检测算法。该模型有效地利用了CNN自动提取特征的能力和BiLSTM高效处理时间序列数据的能力。通过MIT -BIH数据库中心律失常数据集的实验验证,该模型的总体准确率为98.56%。与支持向量机(SVM)和双向长短期记忆神经网络(BiLSTM)相比,该模型的准确率和F1值都有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Digital Twin Model Construction and Management Method of Workshop Based on Cloud Platform Security Enhancement for SMS Verification Code in Mobile Payment Intelligent Drug Delivery Car System Using STM32 Motor Fault Diagnosis Method Based on Deep Learning Design and Implementation of SPARQL Engine Based on Heuristic Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1