shinySDM: Point and click species distribution modeling

Thomas Nash, Aspen Olmsted
{"title":"shinySDM: Point and click species distribution modeling","authors":"Thomas Nash, Aspen Olmsted","doi":"10.23919/ICITST.2017.8356444","DOIUrl":null,"url":null,"abstract":"The focus of this research work is to address the difficulties involved in creating visualizations for species distribution modeling. We focus on two aspects of this problem: running models for predicting the likelihood of outbreak locations and testing the significance of the models generated. To improve this process, this work develops a web application which allows researchers to upload their data, create informative and interactive visualizations, and run desired models in addition to testing their significance. Such an application empowers researchers without any programming experience to both generate complex models and interpret results quickly and effectively. This paper will focus on maximum entropy modeling as the example modeling technique by providing an example run using data on vaccine-preventable diseases.","PeriodicalId":440665,"journal":{"name":"2017 12th International Conference for Internet Technology and Secured Transactions (ICITST)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 12th International Conference for Internet Technology and Secured Transactions (ICITST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICITST.2017.8356444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The focus of this research work is to address the difficulties involved in creating visualizations for species distribution modeling. We focus on two aspects of this problem: running models for predicting the likelihood of outbreak locations and testing the significance of the models generated. To improve this process, this work develops a web application which allows researchers to upload their data, create informative and interactive visualizations, and run desired models in addition to testing their significance. Such an application empowers researchers without any programming experience to both generate complex models and interpret results quickly and effectively. This paper will focus on maximum entropy modeling as the example modeling technique by providing an example run using data on vaccine-preventable diseases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
shinySDM:点和点击物种分布建模
本研究工作的重点是解决在创建物种分布建模可视化过程中遇到的困难。我们关注这个问题的两个方面:运行模型来预测爆发地点的可能性,以及测试所生成模型的重要性。为了改进这一过程,本工作开发了一个web应用程序,允许研究人员上传他们的数据,创建信息丰富的交互式可视化,并运行所需的模型,除了测试它们的重要性。这样的应用程序使没有任何编程经验的研究人员能够生成复杂的模型并快速有效地解释结果。本文将通过使用疫苗可预防疾病的数据进行实例运行,重点介绍最大熵建模作为示例建模技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the cost of cyber security in smart business Towards comparing programming paradigms Towards a security baseline for IaaS-cloud back-ends in Industry 4.0 Enhancing security in the cloud: When traceability meets access control New keyed chaotic neural network hash function based on sponge construction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1