New keyed chaotic neural network hash function based on sponge construction

Nabil Abdoun, S. E. Assad, Khodor Hammoud, R. Assaf, Mohamad Khalil, O. Déforges
{"title":"New keyed chaotic neural network hash function based on sponge construction","authors":"Nabil Abdoun, S. E. Assad, Khodor Hammoud, R. Assaf, Mohamad Khalil, O. Déforges","doi":"10.23919/ICITST.2017.8356341","DOIUrl":null,"url":null,"abstract":"This paper presents a new structure for keyed hash function based on chaotic maps, neural network and sponge construction. The structure of proposed Keyed Sponge Chaotic Neural Network KSCNN hash function is composed of three phases: the initialization phase pads the message M and divides it into q message blocks Mi of fixed size r, the absorbing phase hashes the message blocks by using CNN — Blocki and produces the intermediate hash value HMi and the squeezing phase produces, starting from HMq, the final hash value h with desired length. The combining of sponge construction with the CNN — Blocki improves, on one hand, the security of proposed hash function and makes, on the other hand, the length of hash value more dynamic. Our theoretical analysis and experimental simulations show that the proposed hash function KSCNN has good statistical properties, strong collision resistance, high message sensitivity compared with SHA-3 and immune against pre-image, second pre-image and collision attacks.","PeriodicalId":440665,"journal":{"name":"2017 12th International Conference for Internet Technology and Secured Transactions (ICITST)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 12th International Conference for Internet Technology and Secured Transactions (ICITST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICITST.2017.8356341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper presents a new structure for keyed hash function based on chaotic maps, neural network and sponge construction. The structure of proposed Keyed Sponge Chaotic Neural Network KSCNN hash function is composed of three phases: the initialization phase pads the message M and divides it into q message blocks Mi of fixed size r, the absorbing phase hashes the message blocks by using CNN — Blocki and produces the intermediate hash value HMi and the squeezing phase produces, starting from HMq, the final hash value h with desired length. The combining of sponge construction with the CNN — Blocki improves, on one hand, the security of proposed hash function and makes, on the other hand, the length of hash value more dynamic. Our theoretical analysis and experimental simulations show that the proposed hash function KSCNN has good statistical properties, strong collision resistance, high message sensitivity compared with SHA-3 and immune against pre-image, second pre-image and collision attacks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于海绵构造的新型键控混沌神经网络哈希函数
本文提出了一种基于混沌映射、神经网络和海绵构造的键控哈希函数新结构。所提出的keyyed Sponge混沌神经网络KSCNN哈希函数的结构由三个阶段组成:初始化阶段填充消息M并将其划分为q个固定大小r的消息块Mi,吸收阶段使用CNN - Blocki对消息块进行哈希并产生中间哈希值HMi,压缩阶段从HMq开始产生期望长度的最终哈希值h。海绵构造与CNN - Blocki相结合,一方面提高了所提哈希函数的安全性,另一方面使哈希值的长度更具动态性。理论分析和实验仿真表明,与SHA-3相比,所提出的哈希函数KSCNN具有良好的统计性能、较强的抗碰撞性和较高的消息灵敏度,并且对预图像、二次预图像和碰撞攻击具有免疫力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the cost of cyber security in smart business Towards comparing programming paradigms Towards a security baseline for IaaS-cloud back-ends in Industry 4.0 Enhancing security in the cloud: When traceability meets access control New keyed chaotic neural network hash function based on sponge construction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1