A. Wazir, H. A. Karim, Nouar Aldahoul, M. F. A. Fauzi, Sarina Mansor, Mohd Haris Lye Abdullah, Hor Sui Lyn, Tabibah Zainab Zulkifli
{"title":"Spoken Malay Profanity Classification Using Convolutional Neural Network","authors":"A. Wazir, H. A. Karim, Nouar Aldahoul, M. F. A. Fauzi, Sarina Mansor, Mohd Haris Lye Abdullah, Hor Sui Lyn, Tabibah Zainab Zulkifli","doi":"10.1109/ICSIPA52582.2021.9576781","DOIUrl":null,"url":null,"abstract":"Foul language exists in films, video-sharing platforms, and social media platforms, which increase the risk of a viewer to be exposed to large number of profane words that have negative personal and social impact. This work proposes a CNN-based spoken Malay foul words recognition to establish the base of spoken foul terms detection for monitoring and censorship purpose. A novel foul speech containing 1512 samples are collected, processed, and annotated. The dataset then has been converted into spectral representation of Mel-spectrogram images to be used as an input to CNN model. This research proposes a lightweight CNN model with only six convolutional layers and small size filters to minimize the computational cost. The proposed model’s performance affirms the viability of the proposed visual-based classification method using CNN by achieving an average Malay foul speech terms classification accuracy of 86.50%, precision of 88.68%, and F-score of 86.83. The class of normal conversational class outperformed the class of foul words due to data imbalance and rarity of foul speech samples compared to normal speech terms.","PeriodicalId":326688,"journal":{"name":"2021 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIPA52582.2021.9576781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Foul language exists in films, video-sharing platforms, and social media platforms, which increase the risk of a viewer to be exposed to large number of profane words that have negative personal and social impact. This work proposes a CNN-based spoken Malay foul words recognition to establish the base of spoken foul terms detection for monitoring and censorship purpose. A novel foul speech containing 1512 samples are collected, processed, and annotated. The dataset then has been converted into spectral representation of Mel-spectrogram images to be used as an input to CNN model. This research proposes a lightweight CNN model with only six convolutional layers and small size filters to minimize the computational cost. The proposed model’s performance affirms the viability of the proposed visual-based classification method using CNN by achieving an average Malay foul speech terms classification accuracy of 86.50%, precision of 88.68%, and F-score of 86.83. The class of normal conversational class outperformed the class of foul words due to data imbalance and rarity of foul speech samples compared to normal speech terms.