Modeling received signal strength and multipath propagation effects of moving persons

Marco Cimdins, H. Hellbrück
{"title":"Modeling received signal strength and multipath propagation effects of moving persons","authors":"Marco Cimdins, H. Hellbrück","doi":"10.1109/WPNC.2017.8250061","DOIUrl":null,"url":null,"abstract":"Device-free localization (DFL) systems detect and track persons without devices that participate in the localization process. A person moving within a target area affects the electromagnetic field that is measured by received signal strength (RSS) values. Consequently for DFL systems modeling of RSS is important and still an open issue. In this paper, we develop a simple model for prediction of RSS values in a setup with transmitter and receiver devices, a person and multipath propagation. We design and implement the model as a superposition of both, knife-edge diffraction to account for the change made by the person, and, propagation effects such as multipath propagation that result in reflection and path loss including the antenna characteristics. We evaluate our model in comparison with real measurements in various setups with and without multipath propagation. We achieve an accuracy that is close to our hardware limitations, which is the resolution of the measured RSS values of the receiver.","PeriodicalId":246107,"journal":{"name":"2017 14th Workshop on Positioning, Navigation and Communications (WPNC)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 14th Workshop on Positioning, Navigation and Communications (WPNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WPNC.2017.8250061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Device-free localization (DFL) systems detect and track persons without devices that participate in the localization process. A person moving within a target area affects the electromagnetic field that is measured by received signal strength (RSS) values. Consequently for DFL systems modeling of RSS is important and still an open issue. In this paper, we develop a simple model for prediction of RSS values in a setup with transmitter and receiver devices, a person and multipath propagation. We design and implement the model as a superposition of both, knife-edge diffraction to account for the change made by the person, and, propagation effects such as multipath propagation that result in reflection and path loss including the antenna characteristics. We evaluate our model in comparison with real measurements in various setups with and without multipath propagation. We achieve an accuracy that is close to our hardware limitations, which is the resolution of the measured RSS values of the receiver.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
建模接收信号强度和运动人员的多径传播效应
无设备定位(DFL)系统检测和跟踪没有设备参与定位过程的人员。在目标区域内移动的人会影响通过接收信号强度(RSS)值测量的电磁场。因此,对于DFL系统来说,RSS的建模非常重要,但仍然是一个有待解决的问题。在本文中,我们开发了一个简单的模型,用于预测具有发送和接收设备,一个人和多路径传播的设置中的RSS值。我们设计和实现的模型是两者的叠加,刀刃衍射,以解释人所做的变化,以及传播效应,如多径传播,导致反射和路径损失,包括天线特性。我们将模型与实际测量值进行了比较,在不同的设置中,有和没有多路径传播。我们实现了接近硬件限制的精度,即接收机测量的RSS值的分辨率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Anchorless underwater acoustic localization Comparison of ROS-based visual SLAM methods in homogeneous indoor environment Development of a simulation tool for collaborative navigation systems Vehicle indoor positioning: A survey A graph localization approach to assist a diver-in-distress
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1