Kolmogorov-Smirnov Test for Spectrum Sensing: From the Statistical Test to Energy Detection

R. Maršálek, K. Povalac
{"title":"Kolmogorov-Smirnov Test for Spectrum Sensing: From the Statistical Test to Energy Detection","authors":"R. Maršálek, K. Povalac","doi":"10.1109/SiPS.2012.58","DOIUrl":null,"url":null,"abstract":"Spectrum sensing belongs to important parts of Cognitive Radio (CR) chain. Many different spectrum sensing methods are known. One of the recently proposed approaches to spectrum sensing in cognitive radio systems is based on the Kolmogorov-Smirnov statistical (K-S) test. Statistical K-S test is classified as a non-parametric method to measure the goodness of fit between two distribution functions - the one of the received communication signal and the second of the channel noise. We assume the cumulative distribution function of the noise corresponds to the Additive White Gaussian Noise (AWGN) and is known in advance. The paper discusses two modifications of the Kolmogorov-Smirnov test - the first with the removed information about the signal energy and the second taking it into account for decision. The experimental results prove the robustness of the algorithm for different kinds of received signals.","PeriodicalId":286060,"journal":{"name":"2012 IEEE Workshop on Signal Processing Systems","volume":"148 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Workshop on Signal Processing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SiPS.2012.58","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

Spectrum sensing belongs to important parts of Cognitive Radio (CR) chain. Many different spectrum sensing methods are known. One of the recently proposed approaches to spectrum sensing in cognitive radio systems is based on the Kolmogorov-Smirnov statistical (K-S) test. Statistical K-S test is classified as a non-parametric method to measure the goodness of fit between two distribution functions - the one of the received communication signal and the second of the channel noise. We assume the cumulative distribution function of the noise corresponds to the Additive White Gaussian Noise (AWGN) and is known in advance. The paper discusses two modifications of the Kolmogorov-Smirnov test - the first with the removed information about the signal energy and the second taking it into account for decision. The experimental results prove the robustness of the algorithm for different kinds of received signals.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光谱传感的Kolmogorov-Smirnov检验:从统计检验到能量检测
频谱感知是认知无线电(CR)链的重要组成部分。已知许多不同的频谱传感方法。最近提出的在认知无线电系统中进行频谱感知的方法之一是基于Kolmogorov-Smirnov统计(K-S)测试。统计K-S检验被归类为一种非参数的方法,用来衡量两个分布函数之间的拟合好度-一个是接收到的通信信号,另一个是信道噪声。我们假设噪声的累积分布函数对应于加性高斯白噪声(AWGN),并且是已知的。本文讨论了对柯尔莫哥洛夫-斯米尔诺夫检验的两种修正——一种是去除信号能量信息,另一种是在决策时考虑信号能量信息。实验结果证明了该算法对不同类型接收信号的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fusion of Multi-sensor Images Based on PCA and Self-Adaptive Regional Variance Estimation Frequency Shift Detection of Speech with GMMs AND SVMs Noise-Resistant Mobile Positioning System Based on Code-Aided RSS Estimation Speech/Audio Signal Classification Using Spectral Flux Pattern Recognition Error Floor Compensation for LDPC Codes Using Concatenated Schemes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1