Abu Ubaidah bin Shamsudin, Naoki Mizuno, Jun Fujita, K. Ohno, Ryunosuke Hamada, Thomas Westfechtel, S. Tadokoro, H. Amano
{"title":"Evaluation of LIDAR and GPS based SLAM on fire disaster in petrochemical complexes","authors":"Abu Ubaidah bin Shamsudin, Naoki Mizuno, Jun Fujita, K. Ohno, Ryunosuke Hamada, Thomas Westfechtel, S. Tadokoro, H. Amano","doi":"10.1109/SSRR.2017.8088139","DOIUrl":null,"url":null,"abstract":"Firefighter robot autonomy is important for fire disaster response robotics. SLAM is a key technology for the autonomy. We want to know if SLAM can be used in fire disasters. However, evaluating SLAM in an actual fire disaster is not possible because we cannot generate large fires in actual petrochemical complexes. In this study, we simulated a fire disaster, collected sensor data for different conditions in the fire disaster, and evaluated the accuracy of the SLAM. The fire effect for LIDAR was analyzed and the effect embedded in the LIDAR measurement simulator. Several sensor interval parameters used by a heat protection cover was also analyzed for protecting sensor from heat. The evaluation result show the best parameter is 1 s measurement and 9 s sensor cooling which the average accuracy of GPS and LIDAR based SLAM was in the range 0.25 — 0.36 m in the most difficult scenario in the petrochemical complex, has dimensions 1000 m × 600 m. Using the simulator enables us to evaluate the best interval parameter of GPS and LIDAR based SLAM at the fire disaster. The knowledge from the fire effect of the LIDAR could be used to improve LIDAR measurement in actual fire disasters.","PeriodicalId":403881,"journal":{"name":"2017 IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSRR.2017.8088139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Firefighter robot autonomy is important for fire disaster response robotics. SLAM is a key technology for the autonomy. We want to know if SLAM can be used in fire disasters. However, evaluating SLAM in an actual fire disaster is not possible because we cannot generate large fires in actual petrochemical complexes. In this study, we simulated a fire disaster, collected sensor data for different conditions in the fire disaster, and evaluated the accuracy of the SLAM. The fire effect for LIDAR was analyzed and the effect embedded in the LIDAR measurement simulator. Several sensor interval parameters used by a heat protection cover was also analyzed for protecting sensor from heat. The evaluation result show the best parameter is 1 s measurement and 9 s sensor cooling which the average accuracy of GPS and LIDAR based SLAM was in the range 0.25 — 0.36 m in the most difficult scenario in the petrochemical complex, has dimensions 1000 m × 600 m. Using the simulator enables us to evaluate the best interval parameter of GPS and LIDAR based SLAM at the fire disaster. The knowledge from the fire effect of the LIDAR could be used to improve LIDAR measurement in actual fire disasters.