Least Squares Support Vector Regression Based CARRX Model for Stock Index Volatility Forecasting

Liyan Geng, Junhai Ma
{"title":"Least Squares Support Vector Regression Based CARRX Model for Stock Index Volatility Forecasting","authors":"Liyan Geng, Junhai Ma","doi":"10.1109/FITME.2008.69","DOIUrl":null,"url":null,"abstract":"CARRX model is a new volatility model. This paper applies least squares support vector regression to the CARRX model and a LSSVR-based CARRX model is established for predicting the range volatility of Chinese stock index. Out-of-sample forecasting results of using the LSSVR-CARRX model are compared with that of the ANN-CARRX model. Empirical results show that for the RMSE, MAE, MPE, Theil and Mincer-Zarnowitz regression test, the LSSVR-CARRX model outperforms the ANN-CARRX model both in static and dynamic forecasting. Therefore, LSSVR-CARRX model is expected to be important in developing the novel strategies for volatility trading and advanced risk management.","PeriodicalId":218182,"journal":{"name":"2008 International Seminar on Future Information Technology and Management Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Seminar on Future Information Technology and Management Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FITME.2008.69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

CARRX model is a new volatility model. This paper applies least squares support vector regression to the CARRX model and a LSSVR-based CARRX model is established for predicting the range volatility of Chinese stock index. Out-of-sample forecasting results of using the LSSVR-CARRX model are compared with that of the ANN-CARRX model. Empirical results show that for the RMSE, MAE, MPE, Theil and Mincer-Zarnowitz regression test, the LSSVR-CARRX model outperforms the ANN-CARRX model both in static and dynamic forecasting. Therefore, LSSVR-CARRX model is expected to be important in developing the novel strategies for volatility trading and advanced risk management.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于最小二乘支持向量回归的CARRX模型的股指波动率预测
CARRX模型是一种新的波动率模型。本文将最小二乘支持向量回归应用到CARRX模型中,建立了基于lssvr的CARRX模型,用于预测中国股指的区间波动率。将LSSVR-CARRX模型与ANN-CARRX模型的样本外预测结果进行了比较。实证结果表明,对于RMSE、MAE、MPE、Theil和Mincer-Zarnowitz回归检验,LSSVR-CARRX模型在静态和动态预测方面都优于ANN-CARRX模型。因此,LSSVR-CARRX模型有望在开发波动率交易和高级风险管理的新策略方面发挥重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and Implementation of the Uncertain Resource Objects in the Network Resource Management A Distributed Platform Based on HBWSP&XML for Net Resources Sharing The Framework of Total Decision Support Based on Knowledge Management The Study on Spatial Data of Across-district Emergency Response Information Sharing System How to Identify Equity Market Timing Risk: Case Study of Ping an Insurance's Financing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1