{"title":"Robust discrete controller design for an unmanned research vehicle (URV) using discrete quantitative feedback theory","authors":"D. Wheaton, I. Horowitz, C. Houpis","doi":"10.1109/NAECON.1991.165804","DOIUrl":null,"url":null,"abstract":"The application of non-minimum phase omega '-plane discrete MIMO (multiple-input-multiple-output) quantitative feedback theory (QFT) to the design of a three-axis rate-commanded automatic flight control system for a URV is presented. The URV model used is a seven-input three-output state-space system derived from the small-angle perturbation equations of motion. The controllers and prefilters designed provide a three-axis noninteracting rate-commanded automatic flight control law implementation on the Lambda URV. Hybrid nonlinear simulations verify the successful application of discrete QFT. The yaw-rate channel meets all specifications.<<ETX>>","PeriodicalId":247766,"journal":{"name":"Proceedings of the IEEE 1991 National Aerospace and Electronics Conference NAECON 1991","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE 1991 National Aerospace and Electronics Conference NAECON 1991","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON.1991.165804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The application of non-minimum phase omega '-plane discrete MIMO (multiple-input-multiple-output) quantitative feedback theory (QFT) to the design of a three-axis rate-commanded automatic flight control system for a URV is presented. The URV model used is a seven-input three-output state-space system derived from the small-angle perturbation equations of motion. The controllers and prefilters designed provide a three-axis noninteracting rate-commanded automatic flight control law implementation on the Lambda URV. Hybrid nonlinear simulations verify the successful application of discrete QFT. The yaw-rate channel meets all specifications.<>