{"title":"Topology Optimization of Metamaterials for Energy Dissipation","authors":"Qi Chen, Xianmin Zhang, Benliang Zhu, Hongchuan Zhang, Rixin Wang, Yanfeng Shi, Ling Xiong","doi":"10.1109/MARSS.2018.8481152","DOIUrl":null,"url":null,"abstract":"A novel design concept for buckling-induced mechanical metamaterials for energy dissipation is presented. A topology optimization formulation is proposed, where the force-displacement curves of the unit cells of the metamaterials are tailored to maximize the buckling-induced dissipated energy in a mass constraint. A two-phase algorithm is proposed to find the optimized result from a uniform initial guess. The optimized design has a larger amount of buckling-induced dissipated energy than the structural prototypes based on the designers' intuition.","PeriodicalId":118389,"journal":{"name":"2018 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MARSS.2018.8481152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A novel design concept for buckling-induced mechanical metamaterials for energy dissipation is presented. A topology optimization formulation is proposed, where the force-displacement curves of the unit cells of the metamaterials are tailored to maximize the buckling-induced dissipated energy in a mass constraint. A two-phase algorithm is proposed to find the optimized result from a uniform initial guess. The optimized design has a larger amount of buckling-induced dissipated energy than the structural prototypes based on the designers' intuition.