Robust Frequency Response Estimation Accounting for Noise and Undermodelling

B. Ninness, G. Goodwin
{"title":"Robust Frequency Response Estimation Accounting for Noise and Undermodelling","authors":"B. Ninness, G. Goodwin","doi":"10.23919/ACC.1992.4792662","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of providing bounds on estimated plant frequency response in a form suitable for robust control design. Our approach is to consider the undermodelling as a particular realisation of a random variable and to derive bounds based on averages over all possible noise realisations and over all possible undermodeling realisations. We critically examine the performance of these bounds relative to those that would be obtained by fitting a high order model to the data and then truncating to a low order model. We also show that the parameter in the distribution for the undermodelling can be estimated from the data analagously to the way measurement noise variance is estimated from prediction errors. We propose several new estimators and examine their finite data and asymptotic properties.","PeriodicalId":297258,"journal":{"name":"1992 American Control Conference","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1992 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC.1992.4792662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper addresses the problem of providing bounds on estimated plant frequency response in a form suitable for robust control design. Our approach is to consider the undermodelling as a particular realisation of a random variable and to derive bounds based on averages over all possible noise realisations and over all possible undermodeling realisations. We critically examine the performance of these bounds relative to those that would be obtained by fitting a high order model to the data and then truncating to a low order model. We also show that the parameter in the distribution for the undermodelling can be estimated from the data analagously to the way measurement noise variance is estimated from prediction errors. We propose several new estimators and examine their finite data and asymptotic properties.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑噪声和欠建模的鲁棒频响估计
本文解决了以一种适合于鲁棒控制设计的形式提供估计的植物频率响应边界的问题。我们的方法是将欠建模视为随机变量的特定实现,并基于所有可能的噪声实现和所有可能的欠建模实现的平均值推导出边界。我们严格检查这些边界的性能,相对于那些将通过拟合高阶模型到数据然后截断到低阶模型而获得的边界。我们还表明,可以从数据中类似地估计欠建模分布中的参数,就像从预测误差中估计测量噪声方差一样。我们提出了几个新的估计量,并检验了它们的有限数据和渐近性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
相关文献
Impact of LS Mutation on Pharmacokinetics of Preventive HIV Broadly Neutralizing Monoclonal Antibodies: A Cross-Protocol Analysis of 16 Clinical Trials in People without HIV
IF 5.4 3区 医学PharmaceuticsPub Date : 2024-04-27 DOI: 10.3390/pharmaceutics16050594
Bryan T. Mayer, Lily Zhang, Allan C. deCamp, Chenchen Yu, Alicia Sato, Heather Angier, Kelly E. Seaton, Nicole Yates, Julie E. Ledgerwood, Kenneth Mayer, Marina Caskey, Michel Nussenzweig, Kathryn Stephenson, Boris Julg, Dan H. Barouch, Magdalena E. Sobieszczyk, Srilatha Edupuganti, Colleen F. Kelley, M. Juliana McElrath, Huub C. Gelderblom, Michael Pensiero, Adrian McDermott, Lucio Gama, Richard A. Koup, Peter B. Gilbert, Myron S. Cohen, Lawrence Corey, Ollivier Hyrien, Georgia D. Tomaras, Yunda Huang
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Comparison of Four Discrete-Time Repetitive Control Algorithms Adaptive Feedback Control of Linear Stochastic Systems General Structure of Time-Optimal Control of Robotic Manipulators Moving Along Prescribed Paths Practical computation of the mixed μ problem A Parameterization of Minimal Plants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1