A Machine Learning Approach for the Classification of Indoor Environments Using RF Signatures

M. AlHajri, N. Ali, R. Shubair
{"title":"A Machine Learning Approach for the Classification of Indoor Environments Using RF Signatures","authors":"M. AlHajri, N. Ali, R. Shubair","doi":"10.1109/GLOBALSIP.2018.8646600","DOIUrl":null,"url":null,"abstract":"Efficient deployment of Internet of Things (IoT) sensors primarily depends on allowing the adjustment of sensor power consumption according to the radio frequency (RF) propagation channel which is dictated by the type of the surrounding indoor environment. This paper develops a machine learning approach for indoor environment classification by exploiting support vector machine (SVM) based on RF signatures computed from real-time measurements. Results obtained demonstrate that the combination of received signal strength (RSS) and channel transfer function (CTF) yields a classification accuracy of 83.0% for identifying the type of the indoor environment.","PeriodicalId":119131,"journal":{"name":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBALSIP.2018.8646600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

Efficient deployment of Internet of Things (IoT) sensors primarily depends on allowing the adjustment of sensor power consumption according to the radio frequency (RF) propagation channel which is dictated by the type of the surrounding indoor environment. This paper develops a machine learning approach for indoor environment classification by exploiting support vector machine (SVM) based on RF signatures computed from real-time measurements. Results obtained demonstrate that the combination of received signal strength (RSS) and channel transfer function (CTF) yields a classification accuracy of 83.0% for identifying the type of the indoor environment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种利用射频特征进行室内环境分类的机器学习方法
物联网(IoT)传感器的有效部署主要取决于允许根据周围室内环境类型决定的射频(RF)传播通道调整传感器功耗。本文提出了一种基于实时测量计算射频特征的支持向量机(SVM)进行室内环境分类的机器学习方法。结果表明,结合接收信号强度(RSS)和信道传递函数(CTF)识别室内环境类型的分类准确率为83.0%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ADAPTIVE CSP FOR USER INDEPENDENCE IN MI-BCI PARADIGM FOR UPPER LIMB STROKE REHABILITATION SPATIAL FOURIER TRANSFORM FOR DETECTION AND ANALYSIS OF PERIODIC ASTROPHYSICAL PULSES CNN ARCHITECTURES FOR GRAPH DATA OVERT SPEECH RETRIEVAL FROM NEUROMAGNETIC SIGNALS USING WAVELETS AND ARTIFICIAL NEURAL NETWORKS CNN BASED RICIAN K FACTOR ESTIMATION FOR NON-STATIONARY INDUSTRIAL FADING CHANNEL
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1