Optical Transport Phenomena in Coupled Spherical Cavities

V. Astratov, S. Ashili, Seungmoo Yang
{"title":"Optical Transport Phenomena in Coupled Spherical Cavities","authors":"V. Astratov, S. Ashili, Seungmoo Yang","doi":"10.1109/ICTON.2007.4296247","DOIUrl":null,"url":null,"abstract":"The efficiency of optical transport is studied in one-dimensional (ID) chains and in 3D lattices of coupled microspheres with ~1-3% size disorder. To couple light into such structures we used sources of light formed by dye-doped fluorescent microspheres. Using techniques of spatially resolved scattering spectroscopy we observed large propagation losses (~ 3 dB per sphere) along the chain at the frequencies of whispering gallery modes (WGMs) in the source sphere. Away from the resonance with WGMs we observed much smaller losses (< 1 dB per sphere) due to formation of nanojet-induced modes. The propagation of light in 3D lattices of disordered coupled cavities with WGM resonances is interpreted in terms of percolation theory. In transmission spectra of such 3D structures we observed spectral signatures of strong coupling between multiple spheres with nearly resonant WGMs. The results indicate that the transmission properties can be significantly improved in 3D structures formed by more uniform spheres due to achieving an optical percolation threshold for WGM transport.","PeriodicalId":265478,"journal":{"name":"2007 9th International Conference on Transparent Optical Networks","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 9th International Conference on Transparent Optical Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTON.2007.4296247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The efficiency of optical transport is studied in one-dimensional (ID) chains and in 3D lattices of coupled microspheres with ~1-3% size disorder. To couple light into such structures we used sources of light formed by dye-doped fluorescent microspheres. Using techniques of spatially resolved scattering spectroscopy we observed large propagation losses (~ 3 dB per sphere) along the chain at the frequencies of whispering gallery modes (WGMs) in the source sphere. Away from the resonance with WGMs we observed much smaller losses (< 1 dB per sphere) due to formation of nanojet-induced modes. The propagation of light in 3D lattices of disordered coupled cavities with WGM resonances is interpreted in terms of percolation theory. In transmission spectra of such 3D structures we observed spectral signatures of strong coupling between multiple spheres with nearly resonant WGMs. The results indicate that the transmission properties can be significantly improved in 3D structures formed by more uniform spheres due to achieving an optical percolation threshold for WGM transport.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
耦合球腔中的光输运现象
研究了尺寸无序度为~1-3%的耦合微球在一维链和三维晶格中的光输运效率。为了将光耦合到这种结构中,我们使用了由染料掺杂荧光微球形成的光源。利用空间分辨散射光谱技术,我们观察到在源球的低语通道模式(WGMs)频率下,沿链的传播损耗很大(每球约3 dB)。远离与wgm的共振,我们观察到由于纳米射流诱导模式的形成,损耗要小得多(< 1 dB /球)。用渗流理论解释了光在具有WGM共振的无序耦合腔的三维晶格中的传播。在这种三维结构的透射光谱中,我们观察到具有近共振WGMs的多个球体之间强耦合的光谱特征。结果表明,由于达到了WGM输运的光学渗透阈值,在更均匀的球形成的三维结构中,传输性能可以显著改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Method to Ensure a Feasible Wavelength Assignment within the Routing-Only Problem for Transparent WDM Networks Fundamental Limits and Recent Advances in Slow and Fast Light Systems Based on Optical Parametric Processes in Fibers Distributed Coupling Coefficient DFB SOA-Based Optical Switch Investigation of Optical-Burst-Transmission Induced Impairment in Gain-Clamped Amplifiers Waveguide Lasers in Er:Yb-Doped Phosphate Glass Fabricated by Femtosecond Laser Writing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1