Vibration Design of Amine Regenerator Tower and its Piping System

Jaeyeol Park, Minsung Chae
{"title":"Vibration Design of Amine Regenerator Tower and its Piping System","authors":"Jaeyeol Park, Minsung Chae","doi":"10.1115/pvp2019-93471","DOIUrl":null,"url":null,"abstract":"\n Fluid induced vibration in high-elevation tower and its piping system is examined with on-site measurement, numerical simulation, and analytical model. In this article, Amine regeneration tower in gas separation plant is subjected to investigation since significant vibration in both tower and its piping system prevents the normal operation especially with increased loading capacity. Measurement in frequency domain for inlet piping system shows single dominant peak as well as small peaks in low frequency range. In search of solution, analytical study with computational fluid dynamics model is conducted to reduce fluid velocity which results in decreased dynamic force in both piping system and regeneration tower and reduces the fluid-induced vibration associated with slug flow. Based on the fluid dynamics study, piping modification is designed and applied to the piping system and tower and vibration improvement is achieved as expected.","PeriodicalId":150804,"journal":{"name":"Volume 3: Design and Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3: Design and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/pvp2019-93471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fluid induced vibration in high-elevation tower and its piping system is examined with on-site measurement, numerical simulation, and analytical model. In this article, Amine regeneration tower in gas separation plant is subjected to investigation since significant vibration in both tower and its piping system prevents the normal operation especially with increased loading capacity. Measurement in frequency domain for inlet piping system shows single dominant peak as well as small peaks in low frequency range. In search of solution, analytical study with computational fluid dynamics model is conducted to reduce fluid velocity which results in decreased dynamic force in both piping system and regeneration tower and reduces the fluid-induced vibration associated with slug flow. Based on the fluid dynamics study, piping modification is designed and applied to the piping system and tower and vibration improvement is achieved as expected.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
胺再生塔及其管道系统的振动设计
采用现场测量、数值模拟和解析模型等方法对高塔及其管道系统的流体激振进行了研究。本文对气体分离装置氨再生塔及其管道系统的振动严重影响其正常运行进行了研究,特别是在负荷增加的情况下。进气管道系统的频域测量表现为单主峰和低频小峰。为了解决这一问题,利用计算流体动力学模型进行了分析研究,通过降低流体速度,降低管道系统和再生塔的动力,降低段塞流引起的流体激振。在流体力学研究的基础上,设计了管道改造方案,并将其应用于管道系统和塔架,达到了预期的振动改善效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the Study of Packed Catalyst Bed Stresses for Outward Radial Flow Reactors Alternative Design Approach by Finite Element Analysis for High Pressure Equipment A Review of Temperature Reduction Methods in Codes and Standards for Pipe Supports Elephant Foot Buckling Analysis of Large Unanchored Oil Storage Tanks With Tapered Shells Subjected to Foundation Settlement Development of Stress Intensification Factors for Collared Type Piping Joints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1