Brain tumor detection based on Naïve Bayes Classification

Hein Tun Zaw, Noppadol Maneerat, Khin Yadanar Win
{"title":"Brain tumor detection based on Naïve Bayes Classification","authors":"Hein Tun Zaw, Noppadol Maneerat, Khin Yadanar Win","doi":"10.1109/ICEAST.2019.8802562","DOIUrl":null,"url":null,"abstract":"Brain cancer is caused by the population of abnormal cells called glial cells that takes place in the brain. Over the years, the number of patients who have brain cancer is increasing with respect to the aging population, is a worldwide health problem. The objective of this paper is to develop a method to detect the brain tissues which are affected by cancer especially for grade-4 tumor, Glioblastoma multiforme (GBM). GBM is one of the most malignant cancerous brain tumors as they are fast growing and more likely to spread to other parts of the brain. In this paper, Naïve Bayes classification is utilized for recognition of a tumor region accurately that contains all spreading cancerous tissues. Brain MRI database, preprocessing, morphological operations, pixel subtraction, maximum entropy threshold, statistical features extraction, and Naïve Bayes classifier based prediction algorithm are used in this research. The goal of this method is to detect the tumor area from different brain MRI images and to predict that detected area whether it is a tumor or not. When compared to other methods, this method can properly detect the tumor located in different regions of the brain including the middle region (aligned with eye level) which is the significant advantage of this method. When tested on 50 MRI images, this method develops 81.25% detection rate on tumor images and 100% detection rate on non-tumor images with the overall accuracy 94%.","PeriodicalId":188498,"journal":{"name":"2019 5th International Conference on Engineering, Applied Sciences and Technology (ICEAST)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"63","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 5th International Conference on Engineering, Applied Sciences and Technology (ICEAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEAST.2019.8802562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 63

Abstract

Brain cancer is caused by the population of abnormal cells called glial cells that takes place in the brain. Over the years, the number of patients who have brain cancer is increasing with respect to the aging population, is a worldwide health problem. The objective of this paper is to develop a method to detect the brain tissues which are affected by cancer especially for grade-4 tumor, Glioblastoma multiforme (GBM). GBM is one of the most malignant cancerous brain tumors as they are fast growing and more likely to spread to other parts of the brain. In this paper, Naïve Bayes classification is utilized for recognition of a tumor region accurately that contains all spreading cancerous tissues. Brain MRI database, preprocessing, morphological operations, pixel subtraction, maximum entropy threshold, statistical features extraction, and Naïve Bayes classifier based prediction algorithm are used in this research. The goal of this method is to detect the tumor area from different brain MRI images and to predict that detected area whether it is a tumor or not. When compared to other methods, this method can properly detect the tumor located in different regions of the brain including the middle region (aligned with eye level) which is the significant advantage of this method. When tested on 50 MRI images, this method develops 81.25% detection rate on tumor images and 100% detection rate on non-tumor images with the overall accuracy 94%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Naïve贝叶斯分类的脑肿瘤检测
脑癌是由大脑中被称为神经胶质细胞的异常细胞群引起的。多年来,脑癌患者的数量相对于人口老龄化不断增加,是一个世界性的健康问题。本文的目的是建立一种检测肿瘤影响脑组织的方法,特别是对4级肿瘤,多形性胶质母细胞瘤(GBM)。GBM是最恶性的恶性脑肿瘤之一,因为它们生长迅速,更容易扩散到大脑的其他部位。本文利用Naïve贝叶斯分类来准确识别包含所有扩散癌组织的肿瘤区域。本研究使用了脑MRI数据库、预处理、形态学操作、像素减法、最大熵阈值、统计特征提取以及Naïve基于贝叶斯分类器的预测算法。该方法的目的是从不同的脑MRI图像中检测肿瘤区域,并预测检测到的区域是否为肿瘤。与其他方法相比,该方法可以正确地检测到位于大脑不同区域的肿瘤,包括中间区域(与眼水平线对齐),这是该方法的显著优势。对50张MRI图像进行测试,该方法对肿瘤图像的检出率为81.25%,对非肿瘤图像的检出率为100%,总体准确率为94%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Formal Verification of the Accounting Information Interfaces Using Colored Petri Net Multi-Channel Surface Electromyograph for Monitoring Intradialytic Cramp Narrowband-Internet of Things (NB-IoT) System for Elderly Healthcare Services Municipal Solid Waste Segregation with CNN Measuring Icon Recognization Mapping with Automated Decision Making System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1