T. Thompson, D. Heer, Shane Brown, R. Traylor, Terri S. Fiez
{"title":"Educational design, evaluation, & development of platforms for learning","authors":"T. Thompson, D. Heer, Shane Brown, R. Traylor, Terri S. Fiez","doi":"10.1109/FIE.2004.1408531","DOIUrl":null,"url":null,"abstract":"Systemic reform in undergraduate engineering education is critical to improving student ability and understanding. Electrical engineering and computer science at Oregon State University has worked in collaboration with university science and math education researchers to implement large-scale curriculum reform based on a platform for learning/spl trade/. To successfully approach such a large systemic problem and introduce major education reform, an approach called design research has been used. Design research involves a team of education designers that manage a series of iterative cycles of design, implementation, and evaluation. Each cycle provides the empirical evidence needed to improve instruction, and refine the education theory related to platforms for learning. The design research process has brought a much richer and expansive understanding of the platforms for learning concept and engineering education in general. In part concepts like cross-cutting competencies (which include enhancing community building, student innovation and design skills, depth, breadth and professionalism), educational hardware design, and horizontal and vertical inter-class connections have been better understood through the research. This paper summarizes the design research process as it is used at OSU to reform engineering education. Findings specific to a platform for learning and generally applicable to engineering education are discussed. Finally, implementation changes that resulted from the design research process are presented.","PeriodicalId":339926,"journal":{"name":"34th Annual Frontiers in Education, 2004. FIE 2004.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"34th Annual Frontiers in Education, 2004. FIE 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FIE.2004.1408531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
Systemic reform in undergraduate engineering education is critical to improving student ability and understanding. Electrical engineering and computer science at Oregon State University has worked in collaboration with university science and math education researchers to implement large-scale curriculum reform based on a platform for learning/spl trade/. To successfully approach such a large systemic problem and introduce major education reform, an approach called design research has been used. Design research involves a team of education designers that manage a series of iterative cycles of design, implementation, and evaluation. Each cycle provides the empirical evidence needed to improve instruction, and refine the education theory related to platforms for learning. The design research process has brought a much richer and expansive understanding of the platforms for learning concept and engineering education in general. In part concepts like cross-cutting competencies (which include enhancing community building, student innovation and design skills, depth, breadth and professionalism), educational hardware design, and horizontal and vertical inter-class connections have been better understood through the research. This paper summarizes the design research process as it is used at OSU to reform engineering education. Findings specific to a platform for learning and generally applicable to engineering education are discussed. Finally, implementation changes that resulted from the design research process are presented.