OCR error correction for Vietnamese handwritten text using neural machine translation

D. Q. Nguyen, A. D. Le, M. N. Phan, P. Kromer, I. Zelinka
{"title":"OCR error correction for Vietnamese handwritten text using neural machine translation","authors":"D. Q. Nguyen, A. D. Le, M. N. Phan, P. Kromer, I. Zelinka","doi":"10.1063/5.0066679","DOIUrl":null,"url":null,"abstract":"OCR post-processing is an important step for improving the quality of OCR output texts. Long short-term memory (LSTM) is a deep learning model, which has wide-range applications in many domains like time series prediction, natural language processing and speech recognition. In this paper, we propose an OCR error correction model using neural machine translation with bidirectional LSTM networks at syllable level. Vietnamese OCR text dataset for the model evaluation is outputted from an OCR engine based on the attention-based encoder-decoder (AED) model taking input of handwritten text in the benchmark database of the ICFHR 2018 Vietnamese online handwritten text recognition competition. The experimental results show that the proposed model helps decrease the word error rate in the OCR output texts of the above AED model by about 2%. The model performance is also discussed and compared to the other baseline methods in the competition.","PeriodicalId":253890,"journal":{"name":"1ST VAN LANG INTERNATIONAL CONFERENCE ON HERITAGE AND TECHNOLOGY CONFERENCE PROCEEDING, 2021: VanLang-HeriTech, 2021","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1ST VAN LANG INTERNATIONAL CONFERENCE ON HERITAGE AND TECHNOLOGY CONFERENCE PROCEEDING, 2021: VanLang-HeriTech, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0066679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

OCR post-processing is an important step for improving the quality of OCR output texts. Long short-term memory (LSTM) is a deep learning model, which has wide-range applications in many domains like time series prediction, natural language processing and speech recognition. In this paper, we propose an OCR error correction model using neural machine translation with bidirectional LSTM networks at syllable level. Vietnamese OCR text dataset for the model evaluation is outputted from an OCR engine based on the attention-based encoder-decoder (AED) model taking input of handwritten text in the benchmark database of the ICFHR 2018 Vietnamese online handwritten text recognition competition. The experimental results show that the proposed model helps decrease the word error rate in the OCR output texts of the above AED model by about 2%. The model performance is also discussed and compared to the other baseline methods in the competition.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经机器翻译的越南文手写文本OCR纠错
OCR后处理提高OCR的质量是一个重要的一步输出文本。长短期记忆(LSTM)是一种深度学习模型,在时间序列预测、自然语言处理和语音识别等领域有着广泛的应用。本文提出了一种基于神经机器翻译的音节级双向LSTM网络OCR纠错模型。用于模型评估的越南语OCR文本数据集由OCR引擎输出,该OCR引擎基于基于注意力的编码器-解码器(AED)模型,该模型以ICFHR 2018越南语在线手写文本识别竞赛基准数据库中的手写文本输入为基础。实验结果表明,该模型将上述AED模型OCR输出文本中的单词错误率降低了约2%。本文还讨论了模型的性能,并与其他基准方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimizing the benefits of housing roofers in Ho Chi Minh City to adapt to the current climate change context Vegan leather: An eco-friendly material for sustainable fashion towards environmental awareness Power energy generation fuel cost optimization for thermal power plants using different type of fuels Resolving conflict between conservation and promotion heritage of urban architecture in Vietnam (Case study: Hanoi, Dalat, saigon - ho chi minh city) Urban art environment improvement in Ho Chi Minh City
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1