A Petri Net-Based Metric for Active Rule Validation

Lorena Chavarría-Báez, Xiaoou Li
{"title":"A Petri Net-Based Metric for Active Rule Validation","authors":"Lorena Chavarría-Báez, Xiaoou Li","doi":"10.1109/ICTAI.2011.156","DOIUrl":null,"url":null,"abstract":"Active rules are the mechanism by which some systems can behave automatically. Rule validation is a mandatory step to guarantee those systems work properly. One of the most used validation techniques is based on test cases. In this paper we introduce a new metric through the Conditional Colored Petri Net model of the rule base, to determine the number of test cases.","PeriodicalId":332661,"journal":{"name":"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2011.156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Active rules are the mechanism by which some systems can behave automatically. Rule validation is a mandatory step to guarantee those systems work properly. One of the most used validation techniques is based on test cases. In this paper we introduce a new metric through the Conditional Colored Petri Net model of the rule base, to determine the number of test cases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Petri网的主动规则验证度量
活动规则是一些系统能够自动运行的机制。规则验证是保证这些系统正常工作的必要步骤。最常用的验证技术之一是基于测试用例的。在本文中,我们通过规则库的条件有色Petri网模型引入了一个新的度量来确定测试用例的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Independence-Based MAP for Markov Networks Structure Discovery Flexible, Efficient and Interactive Retrieval for Supporting In-silico Studies of Endobacteria Recurrent Neural Networks for Moisture Content Prediction in Seed Corn Dryer Buildings Top Subspace Synthesizing for Promotional Subspace Mining RELIEF-C: Efficient Feature Selection for Clustering over Noisy Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1