New neighborhoods and an iterated local search algorithm for the generalized traveling salesman problem

IF 2.6 Q2 OPERATIONS RESEARCH & MANAGEMENT SCIENCE EURO Journal on Computational Optimization Pub Date : 2022-01-01 DOI:10.1016/j.ejco.2022.100029
Jeanette Schmidt, Stefan Irnich
{"title":"New neighborhoods and an iterated local search algorithm for the generalized traveling salesman problem","authors":"Jeanette Schmidt,&nbsp;Stefan Irnich","doi":"10.1016/j.ejco.2022.100029","DOIUrl":null,"url":null,"abstract":"<div><p>For a given graph with a vertex set that is partitioned into clusters, the generalized traveling salesman problem (GTSP) is the problem of finding a cost-minimal cycle that contains exactly one vertex of every cluster. We introduce three new GTSP neighborhoods that allow the simultaneous permutation of the sequence of the clusters and the selection of vertices from each cluster. The three neighborhoods and some known neighborhoods from the literature are combined into an effective iterated local search (ILS) for the GTSP. The ILS performs a straightforward random neighborhood selection within the local search and applies an ordinary record-to-record ILS acceptance criterion. The computational experiments on four symmetric standard GTSP libraries show that, with some purposeful refinements, the ILS can compete with state-of-the-art GTSP algorithms.</p></div>","PeriodicalId":51880,"journal":{"name":"EURO Journal on Computational Optimization","volume":"10 ","pages":"Article 100029"},"PeriodicalIF":2.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2192440622000053/pdfft?md5=f5688517686dac40484c0d65534f3440&pid=1-s2.0-S2192440622000053-main.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURO Journal on Computational Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2192440622000053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 1

Abstract

For a given graph with a vertex set that is partitioned into clusters, the generalized traveling salesman problem (GTSP) is the problem of finding a cost-minimal cycle that contains exactly one vertex of every cluster. We introduce three new GTSP neighborhoods that allow the simultaneous permutation of the sequence of the clusters and the selection of vertices from each cluster. The three neighborhoods and some known neighborhoods from the literature are combined into an effective iterated local search (ILS) for the GTSP. The ILS performs a straightforward random neighborhood selection within the local search and applies an ordinary record-to-record ILS acceptance criterion. The computational experiments on four symmetric standard GTSP libraries show that, with some purposeful refinements, the ILS can compete with state-of-the-art GTSP algorithms.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
广义旅行商问题的新邻域及迭代局部搜索算法
对于一个顶点集被划分为簇的给定图,广义旅行推销员问题(GTSP)是寻找一个成本最小循环的问题,该循环只包含每个簇的一个顶点。我们引入了三个新的GTSP邻域,允许同时排列簇的序列和从每个簇中选择顶点。这三个邻域和一些已知的文献邻域被组合成一个有效的迭代局部搜索(ILS)。盲降系统在局部搜索中执行直接的随机邻域选择,并应用普通的记录到记录盲降接受标准。在四个对称标准GTSP库上的计算实验表明,经过一些有目的的改进,ILS可以与最先进的GTSP算法竞争。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
EURO Journal on Computational Optimization
EURO Journal on Computational Optimization OPERATIONS RESEARCH & MANAGEMENT SCIENCE-
CiteScore
3.50
自引率
0.00%
发文量
28
审稿时长
60 days
期刊介绍: The aim of this journal is to contribute to the many areas in which Operations Research and Computer Science are tightly connected with each other. More precisely, the common element in all contributions to this journal is the use of computers for the solution of optimization problems. Both methodological contributions and innovative applications are considered, but validation through convincing computational experiments is desirable. The journal publishes three types of articles (i) research articles, (ii) tutorials, and (iii) surveys. A research article presents original methodological contributions. A tutorial provides an introduction to an advanced topic designed to ease the use of the relevant methodology. A survey provides a wide overview of a given subject by summarizing and organizing research results.
期刊最新文献
Unboxing Tree ensembles for interpretability: A hierarchical visualization tool and a multivariate optimal re-built tree An effective hybrid decomposition approach to solve the network-constrained stochastic unit commitment problem in large-scale power systems Advances in nonlinear optimization and equilibrium problems – Special issue editorial The Marguerite Frank Award for the best EJCO paper 2023 A variable metric proximal stochastic gradient method: An application to classification problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1