首页 > 最新文献

EURO Journal on Computational Optimization最新文献

英文 中文
An effective hybrid decomposition approach to solve the network-constrained stochastic unit commitment problem in large-scale power systems 解决大规模电力系统中网络受限随机机组承诺问题的有效混合分解方法
IF 2.4 Q2 OPERATIONS RESEARCH & MANAGEMENT SCIENCE Pub Date : 2024-01-01 DOI: 10.1016/j.ejco.2024.100085
Ricardo M. Lima , Gonzalo E. Constante-Flores , Antonio J. Conejo , Omar M. Knio

We propose a novel hybrid method to solve the network-constrained stochastic unit commitment problem. We target realistic large-scale instances including hundreds of thermal generation units, thousands of transmission lines and nodes, and a large number of stochastic renewable generation units. This scheduling problem is formulated as a two-stage stochastic programming problem with continuous and binary variables in the first stage and only continuous variables in the second stage. We develop a hybrid solution method that decomposes the original problem into a master problem including unit commitment and dispatch decisions, and decomposed subproblems representing dispatch with transmission constraints per scenario. The proposed decomposition embeds a column-and-constraint generation step within the traditional Benders decomposition framework. The performance of the proposed decomposition technique is contrasted with the solution of the extensive form via branch-and-cut and Benders decomposition available in commercial solvers, and with conventional Benders decomposition variants. Our computational experiments show that the proposed method generates bounds of superior quality and finds solutions for instances where other approaches fail.

我们提出了一种新型混合方法来解决网络约束随机机组承诺问题。我们的目标是现实的大规模实例,包括数百个火力发电机组、数千条输电线路和节点以及大量随机可再生能源发电机组。该调度问题被表述为一个两阶段随机编程问题,第一阶段包含连续和二进制变量,第二阶段仅包含连续变量。我们开发了一种混合求解方法,将原始问题分解为包括机组承诺和调度决策在内的主问题,以及代表调度与每个方案传输约束的分解子问题。拟议的分解方法在传统的本德斯分解框架内嵌入了列和约束生成步骤。我们将拟议分解技术的性能与商业求解器中通过分支切割和本德斯分解求解的广泛形式,以及传统本德斯分解变体进行了对比。我们的计算实验表明,所提出的方法能生成质量上乘的边界,并能在其他方法无法解决的情况下找到解决方案。
{"title":"An effective hybrid decomposition approach to solve the network-constrained stochastic unit commitment problem in large-scale power systems","authors":"Ricardo M. Lima ,&nbsp;Gonzalo E. Constante-Flores ,&nbsp;Antonio J. Conejo ,&nbsp;Omar M. Knio","doi":"10.1016/j.ejco.2024.100085","DOIUrl":"https://doi.org/10.1016/j.ejco.2024.100085","url":null,"abstract":"<div><p>We propose a novel hybrid method to solve the network-constrained stochastic unit commitment problem. We target realistic large-scale instances including hundreds of thermal generation units, thousands of transmission lines and nodes, and a large number of stochastic renewable generation units. This scheduling problem is formulated as a two-stage stochastic programming problem with continuous and binary variables in the first stage and only continuous variables in the second stage. We develop a hybrid solution method that decomposes the original problem into a master problem including unit commitment and dispatch decisions, and decomposed subproblems representing dispatch with transmission constraints per scenario. The proposed decomposition embeds a column-and-constraint generation step within the traditional Benders decomposition framework. The performance of the proposed decomposition technique is contrasted with the solution of the extensive form via branch-and-cut and Benders decomposition available in commercial solvers, and with conventional Benders decomposition variants. Our computational experiments show that the proposed method generates bounds of superior quality and finds solutions for instances where other approaches fail.</p></div>","PeriodicalId":51880,"journal":{"name":"EURO Journal on Computational Optimization","volume":"12 ","pages":"Article 100085"},"PeriodicalIF":2.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2192440624000029/pdfft?md5=6e5b9d1b9d47dcb072bff8ae23d37d2b&pid=1-s2.0-S2192440624000029-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139714415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New computational results for integrated production and outbound distribution scheduling problems for a product with a short lifespan 短寿命产品的综合生产和配送调度问题的新计算结果
IF 2.6 Q2 OPERATIONS RESEARCH & MANAGEMENT SCIENCE Pub Date : 2024-01-01 DOI: 10.1016/j.ejco.2024.100095
Markó Horváth

In this paper, we consider an integrated production and outbound distribution scheduling problem with a single production site, and its extension to multiple plants. A set of orders must be satisfied such that the required pieces from a single product must be first processed on a single machine in a plant, then must be delivered to the customers before their lifespan expire using a single vehicle. The goal is to minimize the makespan of the solution, which is the return time of the vehicle after its last trip. We propose an elementary variable neighborhood search to solve the problem, using two new local search operators. Our computational results show that this simple procedure outperforms the existing, sometimes complex approaches on the widely used benchmark dataset. We also review the existing computational results, and demonstrate that in some cases the comparisons in the literature are invalid due to the use of different rounding of the data. By re-evaluating the accessible solutions we provide a fair comparison for each rounding method. We also consider the extension of the problem to multiple plants, and adapt our solution approach for this extension. Our experiments show that our method is competitive in terms of solution quality with the existing solution approach for the problem.

在本文中,我们考虑的是单个生产基地的综合生产和出货配送调度问题,以及将其扩展到多个工厂的问题。必须满足一组订单的要求,即必须首先在工厂的单台机器上加工单个产品的所需部件,然后使用单个车辆在其使用寿命到期之前将其交付给客户。我们的目标是最大限度地减少解决方案的时间跨度,即车辆最后一次行驶后的返回时间。我们提出了一种基本的变量邻域搜索方法,利用两个新的局部搜索算子来解决这个问题。我们的计算结果表明,在广泛使用的基准数据集上,这种简单的程序优于现有的、有时甚至是复杂的方法。我们还回顾了现有的计算结果,并证明在某些情况下,由于使用了不同的数据舍入方法,文献中的比较结果是无效的。通过重新评估可获得的解决方案,我们为每种四舍五入方法提供了公平的比较。我们还考虑了将问题扩展到多个工厂的问题,并针对这一扩展调整了我们的求解方法。实验结果表明,我们的方法在求解质量方面与该问题的现有求解方法具有竞争力。
{"title":"New computational results for integrated production and outbound distribution scheduling problems for a product with a short lifespan","authors":"Markó Horváth","doi":"10.1016/j.ejco.2024.100095","DOIUrl":"https://doi.org/10.1016/j.ejco.2024.100095","url":null,"abstract":"<div><p>In this paper, we consider an integrated production and outbound distribution scheduling problem with a single production site, and its extension to multiple plants. A set of orders must be satisfied such that the required pieces from a single product must be first processed on a single machine in a plant, then must be delivered to the customers before their lifespan expire using a single vehicle. The goal is to minimize the makespan of the solution, which is the return time of the vehicle after its last trip. We propose an elementary variable neighborhood search to solve the problem, using two new local search operators. Our computational results show that this simple procedure outperforms the existing, sometimes complex approaches on the widely used benchmark dataset. We also review the existing computational results, and demonstrate that in some cases the comparisons in the literature are invalid due to the use of different rounding of the data. By re-evaluating the accessible solutions we provide a fair comparison for each rounding method. We also consider the extension of the problem to multiple plants, and adapt our solution approach for this extension. Our experiments show that our method is competitive in terms of solution quality with the existing solution approach for the problem.</p></div>","PeriodicalId":51880,"journal":{"name":"EURO Journal on Computational Optimization","volume":"12 ","pages":"Article 100095"},"PeriodicalIF":2.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2192440624000121/pdfft?md5=cf7e3d7b2aaa208cbc58be5f8cb0cff9&pid=1-s2.0-S2192440624000121-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141483110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Communication-efficient ADMM using quantization-aware Gaussian process regression 使用量化感知高斯过程回归的通信高效 ADMM
IF 2.6 Q2 OPERATIONS RESEARCH & MANAGEMENT SCIENCE Pub Date : 2024-01-01 DOI: 10.1016/j.ejco.2024.100098
Aldo Duarte , Truong X. Nghiem , Shuangqing Wei

In networks consisting of agents communicating with a central coordinator and working together to solve a global optimization problem in a distributed manner, the agents are often required to solve private proximal minimization subproblems. Such a setting often requires a decomposition method to solve the global distributed problem, resulting in extensive communication overhead. In networks where communication is expensive, it is crucial to reduce the communication overhead of the distributed optimization scheme. Gaussian processes (GPs) are effective at learning the agents' local proximal operators, thereby reducing the communication between the agents and the coordinator. We propose combining this learning method with adaptive uniform quantization for a hybrid approach that can achieve further communication reduction. In our approach, due to data quantization, the GP algorithm is modified to account for the introduced quantization noise statistics. We further improve our approach by introducing an orthogonalization process to the quantizer's input to address the inherent correlation of the input components. We also use dithering to ensure uncorrelation between the quantizer's introduced noise and its input. We propose multiple measures to quantify the trade-off between the communication cost reduction and the optimization solution's accuracy/optimality. Under such metrics, our proposed algorithms can achieve significant communication reduction for distributed optimization with acceptable accuracy, even at low quantization resolutions. This result is demonstrated by simulations of a distributed sharing problem with quadratic cost functions for the agents.

在由代理组成的网络中,代理与中央协调者进行通信,并以分布式方式共同解决全局优化问题,代理通常需要解决私有的近似最小化子问题。在这种情况下,通常需要采用分解方法来解决全局分布式问题,从而造成大量通信开销。在通信费用昂贵的网络中,减少分布式优化方案的通信开销至关重要。高斯过程(GPs)能有效地学习代理的局部近算子,从而减少代理与协调器之间的通信。我们建议将这种学习方法与自适应均匀量化相结合,形成一种混合方法,从而进一步减少通信开销。在我们的方法中,由于数据的量化,GP 算法被修改以考虑引入的量化噪声统计。我们对量化器的输入引入了正交化过程,以解决输入成分的固有相关性,从而进一步改进了我们的方法。我们还使用抖动来确保量化器引入的噪声与其输入之间不存在相关性。我们提出了多种衡量标准,以量化降低通信成本与优化解决方案准确性/最优性之间的权衡。根据这些衡量标准,我们提出的算法即使在量化分辨率较低的情况下,也能显著降低分布式优化的通信成本,并获得可接受的精度。这一结果通过模拟一个代理具有二次成本函数的分布式共享问题得到了证明。
{"title":"Communication-efficient ADMM using quantization-aware Gaussian process regression","authors":"Aldo Duarte ,&nbsp;Truong X. Nghiem ,&nbsp;Shuangqing Wei","doi":"10.1016/j.ejco.2024.100098","DOIUrl":"10.1016/j.ejco.2024.100098","url":null,"abstract":"<div><p>In networks consisting of agents communicating with a central coordinator and working together to solve a global optimization problem in a distributed manner, the agents are often required to solve private proximal minimization subproblems. Such a setting often requires a decomposition method to solve the global distributed problem, resulting in extensive communication overhead. In networks where communication is expensive, it is crucial to reduce the communication overhead of the distributed optimization scheme. Gaussian processes (GPs) are effective at learning the agents' local proximal operators, thereby reducing the communication between the agents and the coordinator. We propose combining this learning method with adaptive uniform quantization for a hybrid approach that can achieve further communication reduction. In our approach, due to data quantization, the GP algorithm is modified to account for the introduced quantization noise statistics. We further improve our approach by introducing an orthogonalization process to the quantizer's input to address the inherent correlation of the input components. We also use dithering to ensure uncorrelation between the quantizer's introduced noise and its input. We propose multiple measures to quantify the trade-off between the communication cost reduction and the optimization solution's accuracy/optimality. Under such metrics, our proposed algorithms can achieve significant communication reduction for distributed optimization with acceptable accuracy, even at low quantization resolutions. This result is demonstrated by simulations of a distributed sharing problem with quadratic cost functions for the agents.</p></div>","PeriodicalId":51880,"journal":{"name":"EURO Journal on Computational Optimization","volume":"12 ","pages":"Article 100098"},"PeriodicalIF":2.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2192440624000157/pdfft?md5=8fd7b21c89e782f11b9739c488b6329b&pid=1-s2.0-S2192440624000157-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142238586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Marguerite Frank Award for the best EJCO paper 2023 玛格丽特-弗兰克奖--表彰 2023 年最佳 EJCO 论文
IF 2.4 Q2 OPERATIONS RESEARCH & MANAGEMENT SCIENCE Pub Date : 2024-01-01 DOI: 10.1016/j.ejco.2024.100087
Immanuel Bomze (Editor-in-Chief)
{"title":"The Marguerite Frank Award for the best EJCO paper 2023","authors":"Immanuel Bomze (Editor-in-Chief)","doi":"10.1016/j.ejco.2024.100087","DOIUrl":"https://doi.org/10.1016/j.ejco.2024.100087","url":null,"abstract":"","PeriodicalId":51880,"journal":{"name":"EURO Journal on Computational Optimization","volume":"12 ","pages":"Article 100087"},"PeriodicalIF":2.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2192440624000042/pdfft?md5=3ca95c18288e8c3fc289a7d12d73c8bb&pid=1-s2.0-S2192440624000042-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140179665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Piecewise SOS-convex moment optimization and applications via exact semi-definite programs 通过精确半有限程序进行片断 SOS-凸矩优化及其应用
IF 2.6 Q2 OPERATIONS RESEARCH & MANAGEMENT SCIENCE Pub Date : 2024-01-01 DOI: 10.1016/j.ejco.2024.100094
Q.Y. Huang , V. Jeyakumar , G. Li

This paper presents exact Semi-Definite Program (SDP) reformulations for infinite-dimensional moment optimization problems involving a new class of piecewise Sum-of-Squares (SOS)-convex functions and projected spectrahedral support sets. These reformulations show that solving a single SDP finds the optimal value and an optimal probability measure of the original moment problem. This is done by establishing an SOS representation for the non-negativity of a piecewise SOS-convex function over a projected spectrahedron. Finally, as an application and a proof-of-concept illustration, the paper presents numerical results for the Newsvendor and revenue maximization problems with higher-order moments by solving their equivalent SDP reformulations. These reformulations promise a flexible and efficient approach to solving these models. The main novelty of the present work in relation to the recent research lies in finding the solution to moment problems, for the first time, with piecewise SOS-convex functions from their numerically tractable exact SDP reformulations.

本文针对无穷维矩优化问题提出了精确的半定式程序(SDP)重构,涉及一类新的片断平方和(SOS)凸函数和投影谱面支持集。这些重述表明,求解单个 SDP 即可找到原始矩问题的最优值和最优概率度量。这是通过在投影谱面上建立片断 SOS-凸函数非负性的 SOS 表示来实现的。最后,作为应用和概念验证说明,本文通过求解等效的 SDP 重述,给出了具有高阶矩的 Newsvendor 和收入最大化问题的数值结果。这些重构有望为解决这些模型提供一种灵活高效的方法。与近期研究相比,本研究的主要创新之处在于首次从其数值可控的精确 SDP 重述中找到了具有片断 SOS-凸函数的矩问题的解。
{"title":"Piecewise SOS-convex moment optimization and applications via exact semi-definite programs","authors":"Q.Y. Huang ,&nbsp;V. Jeyakumar ,&nbsp;G. Li","doi":"10.1016/j.ejco.2024.100094","DOIUrl":"https://doi.org/10.1016/j.ejco.2024.100094","url":null,"abstract":"<div><p>This paper presents exact Semi-Definite Program (SDP) reformulations for infinite-dimensional moment optimization problems involving a new class of piecewise Sum-of-Squares (SOS)-convex functions and projected spectrahedral support sets. These reformulations show that solving a single SDP finds the optimal value and an optimal probability measure of the original moment problem. This is done by establishing an SOS representation for the non-negativity of a piecewise SOS-convex function over a projected spectrahedron. Finally, as an application and a proof-of-concept illustration, the paper presents numerical results for the Newsvendor and revenue maximization problems with higher-order moments by solving their equivalent SDP reformulations. These reformulations promise a flexible and efficient approach to solving these models. The main novelty of the present work in relation to the recent research lies in finding the solution to moment problems, for the first time, with piecewise SOS-convex functions from their numerically tractable exact SDP reformulations.</p></div>","PeriodicalId":51880,"journal":{"name":"EURO Journal on Computational Optimization","volume":"12 ","pages":"Article 100094"},"PeriodicalIF":2.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S219244062400011X/pdfft?md5=a56c7d9f20401f8e18a8c36f5d31f0d6&pid=1-s2.0-S219244062400011X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141483109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unboxing Tree ensembles for interpretability: A hierarchical visualization tool and a multivariate optimal re-built tree 为可解释性开箱树集合:分层可视化工具和多元优化重构树
IF 2.4 Q2 OPERATIONS RESEARCH & MANAGEMENT SCIENCE Pub Date : 2024-01-01 DOI: 10.1016/j.ejco.2024.100084
Giulia Di Teodoro, Marta Monaci, Laura Palagi

The interpretability of models has become a crucial issue in Machine Learning because of algorithmic decisions' growing impact on real-world applications. Tree ensemble methods, such as Random Forests or XgBoost, are powerful learning tools for classification tasks. However, while combining multiple trees may provide higher prediction quality than a single one, it sacrifices the interpretability property resulting in “black-box” models. In light of this, we aim to develop an interpretable representation of a tree-ensemble model that can provide valuable insights into its behavior. First, given a target tree-ensemble model, we develop a hierarchical visualization tool based on a heatmap representation of the forest's feature use, considering the frequency of a feature and the level at which it is selected as an indicator of importance. Next, we propose a mixed-integer linear programming (MILP) formulation for constructing a single optimal multivariate tree that accurately mimics the target model predictions. The goal is to provide an interpretable surrogate model based on oblique hyperplane splits, which uses only the most relevant features according to the defined forest's importance indicators. The MILP model includes a penalty on feature selection based on their frequency in the forest to further induce sparsity of the splits. The natural formulation has been strengthened to improve the computational performance of mixed-integer software. Computational experience is carried out on benchmark datasets from the UCI repository using a state-of-the-art off-the-shelf solver. Results show that the proposed model is effective in yielding a shallow interpretable tree approximating the tree-ensemble decision function.

由于算法决策对实际应用的影响越来越大,模型的可解释性已成为机器学习领域的一个关键问题。随机森林或 XgBoost 等树状集合方法是分类任务的强大学习工具。然而,虽然多棵树的组合可能会比单棵树提供更高的预测质量,但却牺牲了可解释性,导致模型成为 "黑箱"。有鉴于此,我们的目标是开发一种树状集合模型的可解释表征,从而为其行为提供有价值的见解。首先,给定一个目标树-集合模型,我们开发了一种基于森林特征使用热图表示的分层可视化工具,将特征的频率和特征被选中的级别作为重要性指标。接下来,我们提出了一种混合整数线性规划(MILP)公式,用于构建单个最优多元树,以精确模拟目标模型预测。我们的目标是在斜超平面分裂的基础上提供一个可解释的代用模型,该模型根据定义的森林重要性指标只使用最相关的特征。MILP 模型包括根据特征在森林中的频率对特征选择进行惩罚,以进一步诱导分裂的稀疏性。为了提高混合整数软件的计算性能,对自然公式进行了改进。我们使用最先进的现成求解器对 UCI 数据库中的基准数据集进行了计算体验。结果表明,所提出的模型能有效地生成近似于树形集合决策函数的浅层可解释树。
{"title":"Unboxing Tree ensembles for interpretability: A hierarchical visualization tool and a multivariate optimal re-built tree","authors":"Giulia Di Teodoro,&nbsp;Marta Monaci,&nbsp;Laura Palagi","doi":"10.1016/j.ejco.2024.100084","DOIUrl":"https://doi.org/10.1016/j.ejco.2024.100084","url":null,"abstract":"<div><p>The interpretability of models has become a crucial issue in Machine Learning because of algorithmic decisions' growing impact on real-world applications. Tree ensemble methods, such as Random Forests or XgBoost, are powerful learning tools for classification tasks. However, while combining multiple trees may provide higher prediction quality than a single one, it sacrifices the interpretability property resulting in “black-box” models. In light of this, we aim to develop an interpretable representation of a tree-ensemble model that can provide valuable insights into its behavior. First, given a target tree-ensemble model, we develop a hierarchical visualization tool based on a heatmap representation of the forest's feature use, considering the frequency of a feature and the level at which it is selected as an indicator of importance. Next, we propose a mixed-integer linear programming (MILP) formulation for constructing a single optimal multivariate tree that accurately mimics the target model predictions. The goal is to provide an interpretable surrogate model based on oblique hyperplane splits, which uses only the most relevant features according to the defined forest's importance indicators. The MILP model includes a penalty on feature selection based on their frequency in the forest to further induce sparsity of the splits. The natural formulation has been strengthened to improve the computational performance of mixed-integer software. Computational experience is carried out on benchmark datasets from the UCI repository using a state-of-the-art off-the-shelf solver. Results show that the proposed model is effective in yielding a shallow interpretable tree approximating the tree-ensemble decision function.</p></div>","PeriodicalId":51880,"journal":{"name":"EURO Journal on Computational Optimization","volume":"12 ","pages":"Article 100084"},"PeriodicalIF":2.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2192440624000017/pdfft?md5=cf58d262d1df61a2f7105be2f4d9478d&pid=1-s2.0-S2192440624000017-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139503496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Classifying with uncertain data envelopment analysis 利用不确定数据包络分析进行分类
IF 2.4 Q2 OPERATIONS RESEARCH & MANAGEMENT SCIENCE Pub Date : 2024-01-01 DOI: 10.1016/j.ejco.2024.100090
Casey Garner , Allen Holder

Classifications organize entities into categories that identify similarities within a category and discern dissimilarities among categories, and they powerfully classify information in support of analysis. We propose a new classification scheme premised on the reality of imperfect data. Our computational model uses uncertain data envelopment analysis to define a classification's proximity to equitable efficiency, which is an aggregate measure of intra-similarity within a classification's categories. Our classification process has two overriding computational challenges, those being a loss of convexity and a combinatorially explosive search space. We overcome the first challenge by establishing lower and upper bounds on the proximity value, and then by searching this range with a first-order algorithm. We address the second challenge by adapting the p-median problem to initiate our exploration, and by then employing an iterative neighborhood search to finalize a classification. We conclude by classifying the thirty stocks in the Dow Jones Industrial average into performant tiers, by classifying prostate treatments into clinically effectual categories, and dividing airlines into peer groups.

分类将实体组织成不同的类别,从而识别类别内的相似性和类别间的不相似性,并对信息进行有力的分类以支持分析。我们提出了一种基于不完美数据现实的新分类方案。我们的计算模型使用不确定数据包络分析法来定义分类与公平效率的接近程度,公平效率是对分类类别内部相似性的综合衡量。我们的分类过程在计算上面临两大挑战,一是凸性损失,二是搜索空间的组合爆炸性。我们通过确定近似值的下限和上限,然后用一阶算法搜索这个范围来克服第一个挑战。我们通过调整 p-median 问题来启动探索,然后采用迭代邻域搜索来最终确定分类,从而解决了第二个难题。最后,我们将道琼斯工业平均指数中的 30 只股票划分为表现优异的等级,将前列腺治疗方法划分为临床有效的类别,并将航空公司划分为同行组。
{"title":"Classifying with uncertain data envelopment analysis","authors":"Casey Garner ,&nbsp;Allen Holder","doi":"10.1016/j.ejco.2024.100090","DOIUrl":"https://doi.org/10.1016/j.ejco.2024.100090","url":null,"abstract":"<div><p>Classifications organize entities into categories that identify similarities within a category and discern dissimilarities among categories, and they powerfully classify information in support of analysis. We propose a new classification scheme premised on the reality of imperfect data. Our computational model uses uncertain data envelopment analysis to define a classification's proximity to equitable efficiency, which is an aggregate measure of intra-similarity within a classification's categories. Our classification process has two overriding computational challenges, those being a loss of convexity and a combinatorially explosive search space. We overcome the first challenge by establishing lower and upper bounds on the proximity value, and then by searching this range with a first-order algorithm. We address the second challenge by adapting the p-median problem to initiate our exploration, and by then employing an iterative neighborhood search to finalize a classification. We conclude by classifying the thirty stocks in the Dow Jones Industrial average into performant tiers, by classifying prostate treatments into clinically effectual categories, and dividing airlines into peer groups.</p></div>","PeriodicalId":51880,"journal":{"name":"EURO Journal on Computational Optimization","volume":"12 ","pages":"Article 100090"},"PeriodicalIF":2.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2192440624000078/pdfft?md5=e5d692d70868e82bb22e6f67f85185e3&pid=1-s2.0-S2192440624000078-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140879764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in nonlinear optimization and equilibrium problems – Special issue editorial 非线性优化和平衡问题的进展 - 特刊社论
IF 2.4 Q2 OPERATIONS RESEARCH & MANAGEMENT SCIENCE Pub Date : 2024-01-01 DOI: 10.1016/j.ejco.2024.100086
Matteo Lapucci, Fabio Schoen
{"title":"Advances in nonlinear optimization and equilibrium problems – Special issue editorial","authors":"Matteo Lapucci,&nbsp;Fabio Schoen","doi":"10.1016/j.ejco.2024.100086","DOIUrl":"https://doi.org/10.1016/j.ejco.2024.100086","url":null,"abstract":"","PeriodicalId":51880,"journal":{"name":"EURO Journal on Computational Optimization","volume":"12 ","pages":"Article 100086"},"PeriodicalIF":2.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2192440624000030/pdfft?md5=b1efa3cd3c3d32a39ced483bb81bf7b5&pid=1-s2.0-S2192440624000030-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140134480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal shapelets tree for time series interpretable classification 用于时间序列可解释分类的最优小形树
IF 2.4 Q2 OPERATIONS RESEARCH & MANAGEMENT SCIENCE Pub Date : 2024-01-01 DOI: 10.1016/j.ejco.2024.100091
Lorenzo Bonasera, Stefano Gualandi

Time series shapelets are a state-of-the-art data mining technique that is applied to time series supervised classification tasks. Shapelets are defined as subsequences that retain the most discriminating power contained in time series. The main advantage of shapelets-based methods consists of their great interpretability. Indeed, shapelets can provide the end-user with very helpful insights about the most interesting subsequences. In this paper, we propose a novel Mixed-Integer Programming model to optimize shapelets discovery based on optimal binary decision trees. Our formulation provides a flexible and adaptable classification framework that is interpretable with respect to both the mathematical model and the final output. Computational results for a large class of datasets show that our approach achieves performance comparable with state-of-the-art shapelets-based classification methods. Our model is the first approach based on optimal decision tree induction for time series classification.

时间序列形状子序列是一种先进的数据挖掘技术,可用于时间序列监督分类任务。小形被定义为保留时间序列中最具判别能力的子序列。基于 shapelets 的方法的主要优势在于其出色的可解释性。事实上,shapelets 可以为最终用户提供关于最有趣的子序列的非常有用的见解。在本文中,我们提出了一种新颖的混合整数编程模型,用于优化基于最优二叉决策树的 shapelets 发现。我们的方法提供了一个灵活、可调整的分类框架,无论是数学模型还是最终输出结果,都是可解释的。对大量数据集的计算结果表明,我们的方法可与最先进的基于shapelets的分类方法相媲美。我们的模型是第一种基于最优决策树归纳的时间序列分类方法。
{"title":"Optimal shapelets tree for time series interpretable classification","authors":"Lorenzo Bonasera,&nbsp;Stefano Gualandi","doi":"10.1016/j.ejco.2024.100091","DOIUrl":"https://doi.org/10.1016/j.ejco.2024.100091","url":null,"abstract":"<div><p>Time series shapelets are a state-of-the-art data mining technique that is applied to time series supervised classification tasks. Shapelets are defined as subsequences that retain the most discriminating power contained in time series. The main advantage of shapelets-based methods consists of their great interpretability. Indeed, shapelets can provide the end-user with very helpful insights about the most interesting subsequences. In this paper, we propose a novel Mixed-Integer Programming model to optimize shapelets discovery based on optimal binary decision trees. Our formulation provides a flexible and adaptable classification framework that is interpretable with respect to both the mathematical model and the final output. Computational results for a large class of datasets show that our approach achieves performance comparable with state-of-the-art shapelets-based classification methods. Our model is the first approach based on optimal decision tree induction for time series classification.</p></div>","PeriodicalId":51880,"journal":{"name":"EURO Journal on Computational Optimization","volume":"12 ","pages":"Article 100091"},"PeriodicalIF":2.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S219244062400008X/pdfft?md5=b14d7b43a7e4b626d023b6162ce84dcf&pid=1-s2.0-S219244062400008X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141241873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On improvements of multi-objective branch and bound 论多目标分支与约束的改进
IF 2.6 Q2 OPERATIONS RESEARCH & MANAGEMENT SCIENCE Pub Date : 2024-01-01 DOI: 10.1016/j.ejco.2024.100099
Julius Bauß , Sophie N. Parragh , Michael Stiglmayr
Branch and bound methods which are based on the principle “divide and conquer” are a well established solution approach in single-objective integer programming. In multi-objective optimization, branch and bound algorithms are increasingly attracting interest. However, the larger number of objectives raises additional difficulties for implicit enumeration approaches like branch and bound. Since bounding and pruning is considerably weaker in multiple objectives, many branches have to be (partially) searched and may not be pruned directly. The adaptive use of objective space information can guide the search in promising directions to determine a good approximation of the Pareto front already in early stages of the algorithm. In particular, we focus in this article on improving the branching and queuing of subproblems and the handling of lower bound sets.
In our numerical tests, we evaluate the impact of the proposed methods in comparison to a standard implementation of multi-objective branch and bound on knapsack problems, generalized assignment problems and (un)capacitated facility location problems.
基于 "分而治之 "原则的分支与边界方法是单目标整数编程中一种成熟的求解方法。在多目标优化中,分支与边界算法越来越受到关注。然而,目标数量的增加给分支与边界等隐式枚举法带来了额外的困难。由于在多目标情况下,约束和剪枝的作用要弱得多,因此许多分支必须(部分)搜索,而且可能无法直接剪枝。目标空间信息的自适应使用可以引导搜索向有希望的方向进行,从而在算法的早期阶段就确定帕累托前沿的良好近似值。在我们的数值测试中,我们评估了所提方法与多目标分支和约束的标准实施方法相比,对knapsack问题、广义分配问题和(无)容纳设施位置问题的影响。
{"title":"On improvements of multi-objective branch and bound","authors":"Julius Bauß ,&nbsp;Sophie N. Parragh ,&nbsp;Michael Stiglmayr","doi":"10.1016/j.ejco.2024.100099","DOIUrl":"10.1016/j.ejco.2024.100099","url":null,"abstract":"<div><div>Branch and bound methods which are based on the principle “divide and conquer” are a well established solution approach in single-objective integer programming. In multi-objective optimization, branch and bound algorithms are increasingly attracting interest. However, the larger number of objectives raises additional difficulties for implicit enumeration approaches like branch and bound. Since bounding and pruning is considerably weaker in multiple objectives, many branches have to be (partially) searched and may not be pruned directly. The adaptive use of objective space information can guide the search in promising directions to determine a good approximation of the Pareto front already in early stages of the algorithm. In particular, we focus in this article on improving the branching and queuing of subproblems and the handling of lower bound sets.</div><div>In our numerical tests, we evaluate the impact of the proposed methods in comparison to a standard implementation of multi-objective branch and bound on knapsack problems, generalized assignment problems and (un)capacitated facility location problems.</div></div>","PeriodicalId":51880,"journal":{"name":"EURO Journal on Computational Optimization","volume":"12 ","pages":"Article 100099"},"PeriodicalIF":2.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142702537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
EURO Journal on Computational Optimization
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1