Model Selection for Path Loss Prediction in Wireless Networks

Undela Lavanya, Sowjanya Mupparaju, Padmavathi Patnala, Prathyeka Reddy Anugu, S. Surendran
{"title":"Model Selection for Path Loss Prediction in Wireless Networks","authors":"Undela Lavanya, Sowjanya Mupparaju, Padmavathi Patnala, Prathyeka Reddy Anugu, S. Surendran","doi":"10.1109/ICCSP48568.2020.9182186","DOIUrl":null,"url":null,"abstract":"Path loss prediction is an important task in mobile communication networks. Quality of communication between nodes depend on the environment in which the network is operating. Path loss occurs due to many effects such as free-space loss, diffraction, refraction, and reflection. In this paper, we apply different machine learning techniques to model the path loss and to predict the loss in a similar environment. We have used distance vs signal strength data from different wireless access points. The comparison of different models shows that Kalman filtering is performing better in predicting the path loss.","PeriodicalId":321133,"journal":{"name":"2020 International Conference on Communication and Signal Processing (ICCSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Communication and Signal Processing (ICCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSP48568.2020.9182186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Path loss prediction is an important task in mobile communication networks. Quality of communication between nodes depend on the environment in which the network is operating. Path loss occurs due to many effects such as free-space loss, diffraction, refraction, and reflection. In this paper, we apply different machine learning techniques to model the path loss and to predict the loss in a similar environment. We have used distance vs signal strength data from different wireless access points. The comparison of different models shows that Kalman filtering is performing better in predicting the path loss.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无线网络中路径损耗预测的模型选择
路径损耗预测是移动通信网络中的一项重要任务。节点之间的通信质量取决于网络运行的环境。路径损耗是由自由空间损耗、衍射、折射和反射等多种影响引起的。在本文中,我们应用不同的机器学习技术来模拟路径损失并预测类似环境中的损失。我们使用了来自不同无线接入点的距离与信号强度数据。不同模型的比较表明,卡尔曼滤波在预测路径损失方面有较好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Acoustic Scene Classification in Hearing aid using Deep Learning Plant Disease Detection and Recognition using K means Clustering THD Reduction in Execution of A Nine Level Single Phase Inverter Analysis of Heel Fissure Therapy using Thermal Imaging and Image Processing Malicious Application Detection in Android using Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1