Weighted pivot coordinates for partial least squares‐based marker discovery in high‐throughput compositional data

N. Štefelová, J. Palarea‐Albaladejo, K. Hron
{"title":"Weighted pivot coordinates for partial least squares‐based marker discovery in high‐throughput compositional data","authors":"N. Štefelová, J. Palarea‐Albaladejo, K. Hron","doi":"10.1002/sam.11514","DOIUrl":null,"url":null,"abstract":"High‐throughput data representing large mixtures of chemical or biological signals are ordinarily produced in the molecular sciences. Given a number of samples, partial least squares (PLS) regression is a well‐established statistical method to investigate associations between them and any continuous response variables of interest. However, technical artifacts generally make the raw signals not directly comparable between samples. Thus, data normalization is required before any meaningful scientific information can be drawn. This often allows to characterize the processed signals as compositional data where the relevant information is contained in the pairwise log‐ratios between the components of the mixture. The (log‐ratio) pivot coordinate approach facilitates the aggregation into single variables of the pairwise log‐ratios of a component to all the remaining components. This simplifies interpretability and the investigation of their relative importance but, particularly in a high‐dimensional context, the aggregated log‐ratios can easily mix up information from different underlaying processes. In this context, we propose a weighting strategy for the construction of pivot coordinates for PLS regression which draws on the correlation between response variable and pairwise log‐ratios. Using real and simulated data sets, we demonstrate that this proposal enhances the discovery of biological markers in high‐throughput compositional data.","PeriodicalId":342679,"journal":{"name":"Statistical Analysis and Data Mining: The ASA Data Science Journal","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining: The ASA Data Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sam.11514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

High‐throughput data representing large mixtures of chemical or biological signals are ordinarily produced in the molecular sciences. Given a number of samples, partial least squares (PLS) regression is a well‐established statistical method to investigate associations between them and any continuous response variables of interest. However, technical artifacts generally make the raw signals not directly comparable between samples. Thus, data normalization is required before any meaningful scientific information can be drawn. This often allows to characterize the processed signals as compositional data where the relevant information is contained in the pairwise log‐ratios between the components of the mixture. The (log‐ratio) pivot coordinate approach facilitates the aggregation into single variables of the pairwise log‐ratios of a component to all the remaining components. This simplifies interpretability and the investigation of their relative importance but, particularly in a high‐dimensional context, the aggregated log‐ratios can easily mix up information from different underlaying processes. In this context, we propose a weighting strategy for the construction of pivot coordinates for PLS regression which draws on the correlation between response variable and pairwise log‐ratios. Using real and simulated data sets, we demonstrate that this proposal enhances the discovery of biological markers in high‐throughput compositional data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在高通量成分数据中基于偏最小二乘的标记发现的加权枢轴坐标
高通量数据表示大量化学或生物信号的混合物通常在分子科学中产生。给定一些样本,偏最小二乘(PLS)回归是一种完善的统计方法,用于研究它们与任何感兴趣的连续响应变量之间的关联。然而,技术上的人为因素通常使原始信号不能在样本之间直接比较。因此,在绘制任何有意义的科学信息之前,需要对数据进行规范化。这通常允许将处理后的信号表征为成分数据,其中相关信息包含在混合物组分之间的成对对数比中。(log - ratio)枢轴坐标方法有助于将一个组件与所有其余组件的成对对数比率聚合为单个变量。这简化了可解释性和对其相对重要性的调查,但是,特别是在高维环境中,汇总的对数比很容易混淆来自不同底层过程的信息。在这种情况下,我们提出了一种加权策略,用于构建PLS回归的枢轴坐标,该策略利用了响应变量和成对对数比之间的相关性。使用真实和模拟数据集,我们证明了该建议增强了高通量成分数据中生物标记物的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neural interval‐censored survival regression with feature selection Bayesian batch optimization for molybdenum versus tungsten inertial confinement fusion double shell target design Gaussian process selections in semiparametric multi‐kernel machine regression for multi‐pathway analysis An automated alignment algorithm for identification of the source of footwear impressions with common class characteristics Confidence bounds for threshold similarity graph in random variable network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1