Low Resource Style Transfer via Domain Adaptive Meta Learning

Xiangyang Li, Xiang Long, Yu Xia, Sujian Li
{"title":"Low Resource Style Transfer via Domain Adaptive Meta Learning","authors":"Xiangyang Li, Xiang Long, Yu Xia, Sujian Li","doi":"10.48550/arXiv.2205.12475","DOIUrl":null,"url":null,"abstract":"Text style transfer (TST) without parallel data has achieved some practical success. However, most of the existing unsupervised text style transfer methods suffer from (i) requiring massive amounts of non-parallel data to guide transferring different text styles. (ii) colossal performance degradation when fine-tuning the model in new domains. In this work, we propose DAML-ATM (Domain Adaptive Meta-Learning with Adversarial Transfer Model), which consists of two parts: DAML and ATM. DAML is a domain adaptive meta-learning approach to learn general knowledge in multiple heterogeneous source domains, capable of adapting to new unseen domains with a small amount of data.Moreover, we propose a new unsupervised TST approach Adversarial Transfer Model (ATM), composed of a sequence-to-sequence pre-trained language model and uses adversarial style training for better content preservation and style transfer.Results on multi-domain datasets demonstrate that our approach generalizes well on unseen low-resource domains, achieving state-of-the-art results against ten strong baselines.","PeriodicalId":382084,"journal":{"name":"North American Chapter of the Association for Computational Linguistics","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"North American Chapter of the Association for Computational Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2205.12475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Text style transfer (TST) without parallel data has achieved some practical success. However, most of the existing unsupervised text style transfer methods suffer from (i) requiring massive amounts of non-parallel data to guide transferring different text styles. (ii) colossal performance degradation when fine-tuning the model in new domains. In this work, we propose DAML-ATM (Domain Adaptive Meta-Learning with Adversarial Transfer Model), which consists of two parts: DAML and ATM. DAML is a domain adaptive meta-learning approach to learn general knowledge in multiple heterogeneous source domains, capable of adapting to new unseen domains with a small amount of data.Moreover, we propose a new unsupervised TST approach Adversarial Transfer Model (ATM), composed of a sequence-to-sequence pre-trained language model and uses adversarial style training for better content preservation and style transfer.Results on multi-domain datasets demonstrate that our approach generalizes well on unseen low-resource domains, achieving state-of-the-art results against ten strong baselines.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于领域自适应元学习的低资源风格迁移
无并行数据的文本样式转移(TST)在实践中取得了一定的成功。然而,大多数现有的无监督文本样式转移方法都存在:(1)需要大量的非并行数据来指导不同文本样式的转移。(ii)在新域中对模型进行微调时,性能会大幅下降。在这项工作中,我们提出了DAML-ATM (Domain Adaptive Meta-Learning with Adversarial Transfer Model),它由DAML和ATM两部分组成。DAML是一种领域自适应元学习方法,用于在多个异构源领域中学习通用知识,能够在少量数据的情况下适应新的未知领域。此外,我们提出了一种新的无监督TST方法对抗迁移模型(ATM),该模型由序列到序列的预训练语言模型组成,并使用对抗风格训练来更好地进行内容保存和风格迁移。在多领域数据集上的结果表明,我们的方法在未见过的低资源领域上进行了很好的推广,在10个强基线上获得了最先进的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On Synthetic Data for Back Translation Mining Clues from Incomplete Utterance: A Query-enhanced Network for Incomplete Utterance Rewriting Using Paraphrases to Study Properties of Contextual Embeddings GMN: Generative Multi-modal Network for Practical Document Information Extraction Domain Confused Contrastive Learning for Unsupervised Domain Adaptation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1