Classifying Burst and Suppression in the EEG of Post Asphyctic Newborns using a Support Vector Machine

J. Löfhede, N. Löfgren, M. Thordstein, A. Flisberg, I. Kjellmer, K. Lindecrantz
{"title":"Classifying Burst and Suppression in the EEG of Post Asphyctic Newborns using a Support Vector Machine","authors":"J. Löfhede, N. Löfgren, M. Thordstein, A. Flisberg, I. Kjellmer, K. Lindecrantz","doi":"10.1109/CNE.2007.369752","DOIUrl":null,"url":null,"abstract":"A support vector machine (SVM) was trained to distinguish bursts from suppression in burst-suppression EEG, using five features inherent in the electro-encephalogram (EEG) as input. The study was based on data from six full term infants who had suffered from perinatal asphyxia, and the machine was trained with reference classifications made by an experienced electroencephalographer. The results show that the method may be useful, but that differences between patients in the data set makes optimization of the system difficult","PeriodicalId":427054,"journal":{"name":"2007 3rd International IEEE/EMBS Conference on Neural Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 3rd International IEEE/EMBS Conference on Neural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNE.2007.369752","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

A support vector machine (SVM) was trained to distinguish bursts from suppression in burst-suppression EEG, using five features inherent in the electro-encephalogram (EEG) as input. The study was based on data from six full term infants who had suffered from perinatal asphyxia, and the machine was trained with reference classifications made by an experienced electroencephalographer. The results show that the method may be useful, but that differences between patients in the data set makes optimization of the system difficult
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于支持向量机的新生儿窒息后脑电图爆发与抑制分类
利用脑电图固有的5个特征作为输入,训练支持向量机(SVM)来区分突发抑制脑电图中的突发与抑制。这项研究是基于六个患有围产期窒息的足月婴儿的数据,机器是由一位经验丰富的脑电图学家根据参考分类进行训练的。结果表明,该方法可能是有用的,但患者数据集的差异使系统难以优化
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Site-selective Electrical Recording from Small Neuronal Circuits using Spray Patterning Method and Mobile Microelectrodes Use of Intracortical Recordings to Control a Hand Neuroprosthesis A System for Single-trial Analysis of Simultaneously Acquired EEG and fMRI Evaluation of approximate stochastic Hodgkin-Huxley models Iterative Full Head Finite Element Model for Deep Brain Stimulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1