Permutation invariant SVMs

Pannagadatta K. Shivaswamy, T. Jebara
{"title":"Permutation invariant SVMs","authors":"Pannagadatta K. Shivaswamy, T. Jebara","doi":"10.1145/1143844.1143947","DOIUrl":null,"url":null,"abstract":"We extend Support Vector Machines to input spaces that are sets by ensuring that the classifier is invariant to permutations of sub-elements within each input. Such permutations include reordering of scalars in an input vector, re-orderings of tuples in an input matrix or re-orderings of general objects (in Hilbert spaces) within a set as well. This approach induces permutational invariance in the classifier which can then be directly applied to unusual set-based representations of data. The permutation invariant Support Vector Machine alternates the Hungarian method for maximum weight matching within the maximum margin learning procedure. We effectively estimate and apply permutations to the input data points to maximize classification margin while minimizing data radius. This procedure has a strong theoretical justification via well established error probability bounds. Experiments are shown on character recognition, 3D object recognition and various UCI datasets.","PeriodicalId":124011,"journal":{"name":"Proceedings of the 23rd international conference on Machine learning","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd international conference on Machine learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1143844.1143947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

We extend Support Vector Machines to input spaces that are sets by ensuring that the classifier is invariant to permutations of sub-elements within each input. Such permutations include reordering of scalars in an input vector, re-orderings of tuples in an input matrix or re-orderings of general objects (in Hilbert spaces) within a set as well. This approach induces permutational invariance in the classifier which can then be directly applied to unusual set-based representations of data. The permutation invariant Support Vector Machine alternates the Hungarian method for maximum weight matching within the maximum margin learning procedure. We effectively estimate and apply permutations to the input data points to maximize classification margin while minimizing data radius. This procedure has a strong theoretical justification via well established error probability bounds. Experiments are shown on character recognition, 3D object recognition and various UCI datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
排列不变支持向量机
我们将支持向量机扩展到通过确保分类器对每个输入中的子元素的排列不变而设置的输入空间。这种排列包括输入向量中标量的重新排序,输入矩阵中元组的重新排序,或者集合中一般对象(在希尔伯特空间中)的重新排序。这种方法在分类器中引入了排列不变性,然后可以直接应用于不寻常的基于集合的数据表示。在最大边际学习过程中,置换不变支持向量机替代匈牙利方法进行最大权重匹配。我们有效地估计和应用排列输入数据点,以最大限度地提高分类裕度,同时最小化数据半径。通过建立良好的误差概率界限,该程序具有很强的理论正当性。在字符识别、三维物体识别和各种UCI数据集上进行了实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On a theory of learning with similarity functions Bayesian learning of measurement and structural models Predictive search distributions Data association for topic intensity tracking Feature value acquisition in testing: a sequential batch test algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1