Phosy Panthongsy, D. Isarakorn, K. Hamamoto, P. Janphuang
{"title":"Performance and Behavior Analysis of Piezoelectric Energy Harvesting Floor Tiles","authors":"Phosy Panthongsy, D. Isarakorn, K. Hamamoto, P. Janphuang","doi":"10.1109/ICEAST.2019.8802555","DOIUrl":null,"url":null,"abstract":"This paper presents the performance and behavior analysis of two unlike piezoelectric energy harvesting floor tiles in which they are functioned with different frequency up-conversion strategies to achieve the high energy conversion efficiency from low and variable-frequency vibration as the human footstep. One of such strategies is to convert the frequency of piezoelectric bimorph up through the magnetic interaction between a permanent magnet and an iron plate, while another one is achieved on that through the mechanical impact between a cover plate and a wall of the floor tile. Experimentally, the floor tiles having one piezoelectric bimorph inside of them are prototyped and then mounted to their individual input-exciting kit to investigate the energy harvesting performance. The input-exciting kits are employed to simulate the human footstep on floor tiles. The results show that the floor tile with frequency up-converting mechanism based on mechanical impact should be a better option for energy harvesting from human footstep due to the low-profile structure and good energy harvesting performance. Moreover, its operational way can result in long-lasting piezoelectric bimorph. When a cover plate is actuated to move down with the velocity of 54.13 mm/s and then released, the floor tile can produce the average power of 0.82 mW at load resistance approximately of $55.68\\ \\mathrm{k}\\Omega$.","PeriodicalId":188498,"journal":{"name":"2019 5th International Conference on Engineering, Applied Sciences and Technology (ICEAST)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 5th International Conference on Engineering, Applied Sciences and Technology (ICEAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEAST.2019.8802555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
This paper presents the performance and behavior analysis of two unlike piezoelectric energy harvesting floor tiles in which they are functioned with different frequency up-conversion strategies to achieve the high energy conversion efficiency from low and variable-frequency vibration as the human footstep. One of such strategies is to convert the frequency of piezoelectric bimorph up through the magnetic interaction between a permanent magnet and an iron plate, while another one is achieved on that through the mechanical impact between a cover plate and a wall of the floor tile. Experimentally, the floor tiles having one piezoelectric bimorph inside of them are prototyped and then mounted to their individual input-exciting kit to investigate the energy harvesting performance. The input-exciting kits are employed to simulate the human footstep on floor tiles. The results show that the floor tile with frequency up-converting mechanism based on mechanical impact should be a better option for energy harvesting from human footstep due to the low-profile structure and good energy harvesting performance. Moreover, its operational way can result in long-lasting piezoelectric bimorph. When a cover plate is actuated to move down with the velocity of 54.13 mm/s and then released, the floor tile can produce the average power of 0.82 mW at load resistance approximately of $55.68\ \mathrm{k}\Omega$.