{"title":"Fuzzy Q learning based UAV autopilot","authors":"Rajneesh Sharma","doi":"10.1109/CIPECH.2014.7019067","DOIUrl":null,"url":null,"abstract":"Navigation and control of an unmanned aerial vehicle (UAV) is a challenging problem and could be framed as a Reinforcement Learning (RL) task. Herein, we propose to use reinforcement learning for designing a UAV autopilot based on the Fuzzy Q Learning (FQL) approach. Proposed control scheme envisages an amalgamation of proportional (P) control that stabilizes the UAV and an action triggering Fuzzy Inference system (FIS) control that learns the correct control action to achieve the desired flight trajectory for a UAV flight. We test the proposed RL based UAV control for three cases: (i) Altitude control (ii) Trajectory Tracking, and (iii) Reconnaissance flight of a UAV. Results demonstrate the viability and effectiveness of a UAV autopilot designed using FQL.","PeriodicalId":170027,"journal":{"name":"2014 Innovative Applications of Computational Intelligence on Power, Energy and Controls with their impact on Humanity (CIPECH)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Innovative Applications of Computational Intelligence on Power, Energy and Controls with their impact on Humanity (CIPECH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIPECH.2014.7019067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Navigation and control of an unmanned aerial vehicle (UAV) is a challenging problem and could be framed as a Reinforcement Learning (RL) task. Herein, we propose to use reinforcement learning for designing a UAV autopilot based on the Fuzzy Q Learning (FQL) approach. Proposed control scheme envisages an amalgamation of proportional (P) control that stabilizes the UAV and an action triggering Fuzzy Inference system (FIS) control that learns the correct control action to achieve the desired flight trajectory for a UAV flight. We test the proposed RL based UAV control for three cases: (i) Altitude control (ii) Trajectory Tracking, and (iii) Reconnaissance flight of a UAV. Results demonstrate the viability and effectiveness of a UAV autopilot designed using FQL.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模糊Q学习的无人机自动驾驶仪
无人驾驶飞行器(UAV)的导航和控制是一个具有挑战性的问题,可以被视为强化学习(RL)任务。在此,我们提出使用强化学习设计基于模糊Q学习(FQL)方法的无人机自动驾驶仪。所提出的控制方案设想了一种比例(P)控制和动作触发模糊推理系统(FIS)控制的融合,前者可以稳定无人机,后者可以学习正确的控制动作以实现无人机飞行所需的飞行轨迹。我们对提出的基于RL的无人机控制进行了三种情况的测试:(i)高度控制(ii)轨迹跟踪和(iii)无人机侦察飞行。实验结果验证了利用FQL设计的无人机自动驾驶仪的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hybrid CMOS-memristor 4T-NVSRAM cell for low power applications VLSI architecture and implementation of statistical multiplexer A comparative analysis of ant colony optimization for its applications into software testing Neurofuzzy inference system for diagnosis of Leukemia Computation & analysis of aluminum and steel structures by using ABAQUS software for engineering applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1