Mobile Sensor Location Optimization U sing Support Vector Machines with Error-Correcting Output Codes

Sharif H. R. Khalil, N. Namazi, Ouyang Feng
{"title":"Mobile Sensor Location Optimization U sing Support Vector Machines with Error-Correcting Output Codes","authors":"Sharif H. R. Khalil, N. Namazi, Ouyang Feng","doi":"10.1109/WSCE49000.2019.9040991","DOIUrl":null,"url":null,"abstract":"This work is concerned with the introduction and development of a technique to optimally position a Mobile Sensor (MS) in a location with adequate side lobe Radio Frequency (RF) signal power. The proposed method involves the generation of a database (DB) of side lobe power distribution for different azimuth angles of the downlink transmitted signal. The generated DB is subsequently used to train and test a Machine Learning (ML) multiclass classifier, as well as two distinct Convolution Neural Networks (CNN), to identify the desired MS location. Simulation experiments are performed which indicate a maximum accuracy of 99.25%, 96.56% and 96.10% for 8 different receiver locations.","PeriodicalId":153298,"journal":{"name":"2019 2nd World Symposium on Communication Engineering (WSCE)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 2nd World Symposium on Communication Engineering (WSCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSCE49000.2019.9040991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work is concerned with the introduction and development of a technique to optimally position a Mobile Sensor (MS) in a location with adequate side lobe Radio Frequency (RF) signal power. The proposed method involves the generation of a database (DB) of side lobe power distribution for different azimuth angles of the downlink transmitted signal. The generated DB is subsequently used to train and test a Machine Learning (ML) multiclass classifier, as well as two distinct Convolution Neural Networks (CNN), to identify the desired MS location. Simulation experiments are performed which indicate a maximum accuracy of 99.25%, 96.56% and 96.10% for 8 different receiver locations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于纠错输出码的支持向量机的移动传感器定位优化
这项工作涉及一种技术的引入和发展,该技术可将移动传感器(MS)最佳地定位在具有足够的旁瓣射频(RF)信号功率的位置。所提出的方法涉及到对下行传输信号的不同方位角生成旁瓣功率分布数据库(DB)。生成的数据库随后用于训练和测试机器学习(ML)多类分类器,以及两个不同的卷积神经网络(CNN),以识别所需的MS位置。仿真实验表明,在8个不同的接收位置下,该方法的最大精度分别为99.25%、96.56%和96.10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
WSCE 2019 Author Index AGRITECHNO: A Development of a Revolutionized Farmer Assisted Agricultural Product Forecasting Mobile App System Effect of Robot Position Control with Force Information for Cooperative Work between Remote Robot Systems A Hierarchical Beam Search Algorithm with BetterPerformance for Millimeter-Wave Communication Systolic Lidar-based Fuzzy Logic System for border Monitoring using FPGA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1