{"title":"Drowning Recognition for Ocean Surveillance using Computer Vision and Drone Control","authors":"M. Rakotondraibé, Tianyang Fang, J. Saniie","doi":"10.1109/eIT57321.2023.10187281","DOIUrl":null,"url":null,"abstract":"According to WHO's report from 2021, Drowning is the 3rd leading cause of unintentional death worldwide. The use of autonomous drones for drowning recognition can increase the survival rate and help lifeguards and rescuers with their life saving mission. This paper presents a real-time drowning recognition model and algorithm for ocean surveillance that can be implemented on a drone. The presented model has been trained using two different approaches and has 88% accuracy. Compared to the contemporary models of drowning recognition designed for swimming pools, the model presented is better suited for outdoor applications in the ocean.","PeriodicalId":113717,"journal":{"name":"2023 IEEE International Conference on Electro Information Technology (eIT)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Electro Information Technology (eIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/eIT57321.2023.10187281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
According to WHO's report from 2021, Drowning is the 3rd leading cause of unintentional death worldwide. The use of autonomous drones for drowning recognition can increase the survival rate and help lifeguards and rescuers with their life saving mission. This paper presents a real-time drowning recognition model and algorithm for ocean surveillance that can be implemented on a drone. The presented model has been trained using two different approaches and has 88% accuracy. Compared to the contemporary models of drowning recognition designed for swimming pools, the model presented is better suited for outdoor applications in the ocean.