Integration of a relaxation voltage prediction function into a PI-based observer to improve the SOC estimation of battery packs in renewable energy applications

G. Nobile, E. Vasta, M. Cacciato, G. Scarcella, G. Scelba, Agnese Giuseppa Federica Di Stefano, G. Leotta, P. Pugliatti, F. Bizzarri
{"title":"Integration of a relaxation voltage prediction function into a PI-based observer to improve the SOC estimation of battery packs in renewable energy applications","authors":"G. Nobile, E. Vasta, M. Cacciato, G. Scarcella, G. Scelba, Agnese Giuseppa Federica Di Stefano, G. Leotta, P. Pugliatti, F. Bizzarri","doi":"10.1109/ELEKTRO49696.2020.9130337","DOIUrl":null,"url":null,"abstract":"The integration of energy storage systems (ESSs) and specially of battery ESSs (BESSs) with renewable energy sources represents an efficient solution due to their ability to provide energy time shifting, peak shaving and so on. Considering the above, deepening all aspects related to the precise estimation of the state of charge (SOC) of a battery becomes extremely important. In this work, a real-time estimation algorithm including a PI-based observer and an equivalent circuit model (ECM), is improved exploiting the SOC dependence on the open circuit voltage (OCV). Particularly, it is described how the SOC can be reliably deduced from relaxation voltage in a short time thanks to a prediction function. The integration of such function into the PI-based observer allows to get a good trade-off between accuracy and complexity.","PeriodicalId":165069,"journal":{"name":"2020 ELEKTRO","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 ELEKTRO","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELEKTRO49696.2020.9130337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The integration of energy storage systems (ESSs) and specially of battery ESSs (BESSs) with renewable energy sources represents an efficient solution due to their ability to provide energy time shifting, peak shaving and so on. Considering the above, deepening all aspects related to the precise estimation of the state of charge (SOC) of a battery becomes extremely important. In this work, a real-time estimation algorithm including a PI-based observer and an equivalent circuit model (ECM), is improved exploiting the SOC dependence on the open circuit voltage (OCV). Particularly, it is described how the SOC can be reliably deduced from relaxation voltage in a short time thanks to a prediction function. The integration of such function into the PI-based observer allows to get a good trade-off between accuracy and complexity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将松弛电压预测函数集成到基于pi的观测器中,以改进可再生能源应用中电池组的SOC估计
储能系统(ESSs),特别是电池储能系统(BESSs)与可再生能源的集成,由于其提供能量时移、调峰等能力,代表了一种有效的解决方案。综上所述,深化与电池荷电状态(SOC)的精确估计相关的各个方面变得极其重要。在这项工作中,改进了一种实时估计算法,包括基于pi的观测器和等效电路模型(ECM),利用SOC对开路电压(OCV)的依赖。特别地,描述了如何利用预测函数在短时间内从弛豫电压可靠地推导出SOC。将这样的函数集成到基于pi的观测器中,可以在精度和复杂性之间取得很好的平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling of induction-assisted 3D laser printing Ovality and Tightening Force Analysis of Large Induction Machine Rotor Photonic Services with Sensor System in One Fibre with 100-GHz DWDM Grid A reform of laboratory exercises in electricity and magnetism Analysis of the impacts of the VGSth in modern SMPS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1