Segmental intensity and HMM modeling

P. Dumouchel, D. O'Shaughnessy
{"title":"Segmental intensity and HMM modeling","authors":"P. Dumouchel, D. O'Shaughnessy","doi":"10.1109/CCECE.1995.526596","DOIUrl":null,"url":null,"abstract":"We propose to use a stochastic segmental intensity model independent of the HMM model in INRS's large vocabulary continuous speech recognizer. First, we examine how to insert this model into the search algorithm without violating the optimality constraints of this algorithm. Second, we propose and test the performance of four different intensity models. The training and testing of the models is done on a studio quality speaker-dependent speech corpus. The first model is a Gaussian mixture phone intensity model independent of the phonemic context. The second model is a Gaussian mixture phone intensity model dependent on the right or left phoneme context. The third model is a Gaussian mixture intensity model based on the variation of intensity within a diphone. Finally, the last model consists of a stochastic silence-speech detector. Performance comparisons show that the best model uses Gaussian mixture of the variation of intensity within a diphone (third model). This model improves the percentage of word recognition from 89.58% (no intensity modeling) to 90.92%.","PeriodicalId":158581,"journal":{"name":"Proceedings 1995 Canadian Conference on Electrical and Computer Engineering","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1995 Canadian Conference on Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCECE.1995.526596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose to use a stochastic segmental intensity model independent of the HMM model in INRS's large vocabulary continuous speech recognizer. First, we examine how to insert this model into the search algorithm without violating the optimality constraints of this algorithm. Second, we propose and test the performance of four different intensity models. The training and testing of the models is done on a studio quality speaker-dependent speech corpus. The first model is a Gaussian mixture phone intensity model independent of the phonemic context. The second model is a Gaussian mixture phone intensity model dependent on the right or left phoneme context. The third model is a Gaussian mixture intensity model based on the variation of intensity within a diphone. Finally, the last model consists of a stochastic silence-speech detector. Performance comparisons show that the best model uses Gaussian mixture of the variation of intensity within a diphone (third model). This model improves the percentage of word recognition from 89.58% (no intensity modeling) to 90.92%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
片段强度与HMM建模
我们提出在INRS的大词汇量连续语音识别器中使用独立于HMM模型的随机片段强度模型。首先,我们研究了如何将该模型插入到搜索算法中,而不违反该算法的最优性约束。其次,我们提出并测试了四种不同强度模型的性能。模型的训练和测试是在工作室质量的演讲者依赖的语音语料库上完成的。第一个模型是独立于音位上下文的高斯混合电话强度模型。第二个模型是依赖于左或右音素上下文的高斯混合电话强度模型。第三种模型是基于双管内强度变化的高斯混合强度模型。最后,最后一个模型由一个随机无声语音检测器组成。性能比较表明,最好的模型使用高斯混合的强度变化在一个diphone(第三模型)。该模型将单词识别率从89.58%(无强度建模)提高到90.92%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Numerical optimization for CDMA spreading sequences Intersystem interference modelling for land mobile systems A stable Ka band planar Gunn diode dielectric resonator oscillator (DRO) Performance of a broadband satellite communications system Dynamic range requirements for CDMA-based PCS power amplifiers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1