Genetic algorithms with adaptive probabilities of operator selection

J. Stanczak, J. Mulawka, B. K. Verma
{"title":"Genetic algorithms with adaptive probabilities of operator selection","authors":"J. Stanczak, J. Mulawka, B. K. Verma","doi":"10.1109/ICCIMA.1999.798575","DOIUrl":null,"url":null,"abstract":"In this paper we propose a new method of tuning the probabilities of the genetic operators. We assume that every member of the optimized population conducts his own ranking of genetic operator qualities. This ranking becomes a base to compute the probabilities of appearance and execution of genetic operators. This set of probabilities is a base of experience of every individual and according to this it chooses the operator in every iteration of the algorithm. Due to this experience one can maximize the chance of offspring survival.","PeriodicalId":110736,"journal":{"name":"Proceedings Third International Conference on Computational Intelligence and Multimedia Applications. ICCIMA'99 (Cat. No.PR00300)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Third International Conference on Computational Intelligence and Multimedia Applications. ICCIMA'99 (Cat. No.PR00300)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIMA.1999.798575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

In this paper we propose a new method of tuning the probabilities of the genetic operators. We assume that every member of the optimized population conducts his own ranking of genetic operator qualities. This ranking becomes a base to compute the probabilities of appearance and execution of genetic operators. This set of probabilities is a base of experience of every individual and according to this it chooses the operator in every iteration of the algorithm. Due to this experience one can maximize the chance of offspring survival.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
算子选择概率自适应遗传算法
在本文中,我们提出了一种调整遗传算子概率的新方法。我们假设优化群体中的每个成员都对遗传算子质量进行自己的排序。这个排序成为计算遗传算子出现和执行概率的基础。这组概率是每个个体的经验基础,并根据它在算法的每次迭代中选择算子。由于这种经验,一个人可以最大限度地提高后代生存的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modular rough fuzzy MLP: evolutionary design Indian language multimedia and information retrieval An image understanding system for various images based on multi-agent architecture End-to-end simulation of VBR traffic over ATM networks using CIPP network traffic model Fuzzy approach to recognize handwritten Tamil characters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1