Thomas Kemmler, Rainer Maier, C. Widmann, B. Thomas
{"title":"Using a Thermal Energy Storage to Provide Flexibility for Heat Pump Optimization Control with Rapid Control Prototyping and SG Ready Standard","authors":"Thomas Kemmler, Rainer Maier, C. Widmann, B. Thomas","doi":"10.2991/ires-19.2019.16","DOIUrl":null,"url":null,"abstract":"The coupling of the heat and power sector is required as supply and demand in the German electricity mix drift further and further apart with a high percentage of renewable energy. Heat pumps in combination with thermal energy storage systems can be a useful way to couple the heat and power sectors. This paper presents a hardware-in-the-loop test bench for experimental investigation of optimized control strategies for heat pumps. 24-hour experiments are carried out to test whether the heat pump is able to serve optimized schedules generated by a MATLAB algorithm. The results show that the heat pump is capable of following the generated schedules, and the maximum deviation of the operational time between schedule and experiment is only 3%. Additionally, the system can serve the demand for space heating and DHW at any time. Keywords—Heat pump, Energy management, SG ready, Thermal energy storage, Control strategy, Optimization, hardware-in-the-loop","PeriodicalId":424726,"journal":{"name":"Proceedings of the 13th International Renewable Energy Storage Conference 2019 (IRES 2019)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Renewable Energy Storage Conference 2019 (IRES 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/ires-19.2019.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The coupling of the heat and power sector is required as supply and demand in the German electricity mix drift further and further apart with a high percentage of renewable energy. Heat pumps in combination with thermal energy storage systems can be a useful way to couple the heat and power sectors. This paper presents a hardware-in-the-loop test bench for experimental investigation of optimized control strategies for heat pumps. 24-hour experiments are carried out to test whether the heat pump is able to serve optimized schedules generated by a MATLAB algorithm. The results show that the heat pump is capable of following the generated schedules, and the maximum deviation of the operational time between schedule and experiment is only 3%. Additionally, the system can serve the demand for space heating and DHW at any time. Keywords—Heat pump, Energy management, SG ready, Thermal energy storage, Control strategy, Optimization, hardware-in-the-loop