The Research of Target Identification Based on Neural Network and D-S Evidence Theory

Yulan Hu, Xiaojing Fan, Huijing Zhao, Bing Hu
{"title":"The Research of Target Identification Based on Neural Network and D-S Evidence Theory","authors":"Yulan Hu, Xiaojing Fan, Huijing Zhao, Bing Hu","doi":"10.1109/CAR.2009.52","DOIUrl":null,"url":null,"abstract":"This paper presents a method of multi-sensor data fusion based on neuron network and reasoning (Dempster-Shafer evidence reasoning). The method can use D-S’s Evidence to deal with the inaccuracy and fuzzy information. And also it can give full play to self-study of neural net, self-adapting and fault tolerant ability. In this way it has doughty robustness to uncertain information and improve the system identification rate. Then the D-S evidence is used to fuse the results derived from the neural network at different time. The result of computer simulation showsthe method is effective and correct.","PeriodicalId":320307,"journal":{"name":"2009 International Asia Conference on Informatics in Control, Automation and Robotics","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Asia Conference on Informatics in Control, Automation and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAR.2009.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper presents a method of multi-sensor data fusion based on neuron network and reasoning (Dempster-Shafer evidence reasoning). The method can use D-S’s Evidence to deal with the inaccuracy and fuzzy information. And also it can give full play to self-study of neural net, self-adapting and fault tolerant ability. In this way it has doughty robustness to uncertain information and improve the system identification rate. Then the D-S evidence is used to fuse the results derived from the neural network at different time. The result of computer simulation showsthe method is effective and correct.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经网络和D-S证据理论的目标识别研究
提出了一种基于神经元网络和推理(Dempster-Shafer证据推理)的多传感器数据融合方法。该方法可以利用D-S证据来处理不准确和模糊的信息。并且可以充分发挥神经网络的自学习、自适应和容错能力。该方法对不确定信息具有较强的鲁棒性,提高了系统的识别率。然后利用D-S证据对不同时刻的神经网络结果进行融合。计算机仿真结果表明了该方法的有效性和正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Machine Learning Method for Dynamic Traffic Control and Guidance on Freeway Networks Investigations on Detection Model of Large Scale Rotation Shaft Torsional Vibration in Precision Heavy Machinery A Kind of Communication Simulation System for WorldFIP Field Intelligent Control Network Utilizing Multi-Agent Modelling to Develope Urban Simulations Heuristic Optimization for Dual-resource Constrained Job Shop Scheduling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1