{"title":"Non-myopic sensor scheduling for a centralized sensor network","authors":"H. Shah, D. Morrell","doi":"10.1109/SAM.2008.4606871","DOIUrl":null,"url":null,"abstract":"When tracking a target in a sensor network with constrained resources, the target state estimate error can be significantly reduced using non-myopic sensor scheduling strategies. Integer non-linear programming has been used to obtain myopic sensor schedules (Chhetri et al., 2007). In this paper, we apply it to a non-myopic sensor scheduling scenario consisting of a network of acoustic sensors in a centralized sensor network; there is one fusion center that combines measurements to update target belief. We cast this problem, which we call the Central Node Scheduling problem, as an integer non-linear programming problem with the objective of minimizing the total predicted tracking error over an M step planning horizon subject to sensor usage and start-up cost constraints. Using Monte Carlo simulations, we show the benefits of this approach for the centralized sensor network.","PeriodicalId":422747,"journal":{"name":"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2008.4606871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
When tracking a target in a sensor network with constrained resources, the target state estimate error can be significantly reduced using non-myopic sensor scheduling strategies. Integer non-linear programming has been used to obtain myopic sensor schedules (Chhetri et al., 2007). In this paper, we apply it to a non-myopic sensor scheduling scenario consisting of a network of acoustic sensors in a centralized sensor network; there is one fusion center that combines measurements to update target belief. We cast this problem, which we call the Central Node Scheduling problem, as an integer non-linear programming problem with the objective of minimizing the total predicted tracking error over an M step planning horizon subject to sensor usage and start-up cost constraints. Using Monte Carlo simulations, we show the benefits of this approach for the centralized sensor network.