Evaporative intrachip hotspot cooling with a hierarchical manifold microchannel heat sink array

Kevin P. Drummond, J. Weibel, S. Garimella, Doosan Back, D. Janes, M. Sinanis, D. Peroulis
{"title":"Evaporative intrachip hotspot cooling with a hierarchical manifold microchannel heat sink array","authors":"Kevin P. Drummond, J. Weibel, S. Garimella, Doosan Back, D. Janes, M. Sinanis, D. Peroulis","doi":"10.1109/ITHERM.2016.7517565","DOIUrl":null,"url":null,"abstract":"A hierarchical manifold microchannel heat sink is used to dissipate heat from a small hotspot region superposed on a larger region of uniform background heat flux. A 5 mm × 5 mm overall chip footprint area is cooled using a 3 × 3 array of intrachip silicon microchannel heat sinks fed in parallel using a manifold distributor. Each heat sink consists of a bank of 25 high-aspect-ratio microchannels that are nominally 30 μm wide and 300 μm deep. The uniform background heat flux is generated with a 3 × 3 array of thin-film heaters fabricated on the chip; temperature sensors placed in each of these nine heating zones provide spatially resolved chip surface temperature measurements. An individually powered 200 μm × 200 μm hotspot heater is centered on the chip. The heat sink thermal and hydraulic performance is evaluated using HFE-7100 as the working fluid and for mass fluxes ranging from 600 kg/m2s to 2070 kg/m2s at a constant inlet temperature of 60°C and outlet pressure of 122 kPa. Background heat fluxes up to 450 W/cm2 and hotspot fluxes of greater than 2500 W/cm2 are simultaneously dissipated. The chip temperature uniformity and maximum temperature rise during hotspot heating are assessed. For the case with the highest simultaneous background and hotspot heat fluxes, the measured heat sink pressure drop is ~75 kPa and the average chip temperature is ~30°C above the fluid inlet temperature.","PeriodicalId":426908,"journal":{"name":"2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITHERM.2016.7517565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

A hierarchical manifold microchannel heat sink is used to dissipate heat from a small hotspot region superposed on a larger region of uniform background heat flux. A 5 mm × 5 mm overall chip footprint area is cooled using a 3 × 3 array of intrachip silicon microchannel heat sinks fed in parallel using a manifold distributor. Each heat sink consists of a bank of 25 high-aspect-ratio microchannels that are nominally 30 μm wide and 300 μm deep. The uniform background heat flux is generated with a 3 × 3 array of thin-film heaters fabricated on the chip; temperature sensors placed in each of these nine heating zones provide spatially resolved chip surface temperature measurements. An individually powered 200 μm × 200 μm hotspot heater is centered on the chip. The heat sink thermal and hydraulic performance is evaluated using HFE-7100 as the working fluid and for mass fluxes ranging from 600 kg/m2s to 2070 kg/m2s at a constant inlet temperature of 60°C and outlet pressure of 122 kPa. Background heat fluxes up to 450 W/cm2 and hotspot fluxes of greater than 2500 W/cm2 are simultaneously dissipated. The chip temperature uniformity and maximum temperature rise during hotspot heating are assessed. For the case with the highest simultaneous background and hotspot heat fluxes, the measured heat sink pressure drop is ~75 kPa and the average chip temperature is ~30°C above the fluid inlet temperature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
蒸发芯片热点冷却与分层流形微通道散热器阵列
采用分层流形微通道散热器,将小热点区域的热量分散到较大的均匀背景热流区域上。一个5毫米× 5毫米的整体芯片占地面积是使用一个3 × 3阵列的芯片内硅微通道散热片,并联使用一个流形分布器。每个散热器由一组25个高纵横比的微通道组成,这些微通道的名义宽度为30 μm,深度为300 μm。均匀的本底热流由在芯片上制作的3 × 3薄膜加热器阵列产生;放置在这九个加热区的温度传感器提供空间分辨芯片表面温度测量。单独供电的200 μm × 200 μm热点加热器位于芯片中央。在进口温度为60℃,出口压力为122 kPa的恒定条件下,以HFE-7100作为工作流体,质量通量为600 kg/m2s至2070 kg/m2s,对散热器的热性能和水力性能进行了评估。高达450 W/cm2的背景热通量和大于2500 W/cm2的热点通量同时消散。评估了芯片在热点加热过程中的温度均匀性和最大温升。在背景热流和热点热流同时最高的情况下,测得的散热器压降为~75 kPa,芯片平均温度比流体入口温度高~30℃。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analytical model of graphene-enabled ultra-low power phase change memory ALN thin-films as heat spreaders in III–V photonics devices Part 2: Simulations Experimental study of bubble dynamics in highly wetting dielectric liquid pool boiling through high-speed video Condensate mobility actuated by microsurface topography and wettability modifications Inverse approach to characterize die-attach thermal interface of light emitting diodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1