Improving Multi-model Hybrid Chinese Long-text Classification through BERT Optimisation

Yu Wang, He Huang, Yunni Xia
{"title":"Improving Multi-model Hybrid Chinese Long-text Classification through BERT Optimisation","authors":"Yu Wang, He Huang, Yunni Xia","doi":"10.1109/ICNSC55942.2022.10004130","DOIUrl":null,"url":null,"abstract":"Text classification is an almost unavoidable process in natural language processing and has a wide range of application scenarios in industry. Although many existing methods can achieve superior classification results, raising the effect of text classification not only poses a great challenge, but also provides a longitudinal study of technological improvement. Based on the pre-trained bidirectional encoder representations from transformer (BERT) model and in-depth research on deep learning, we propose a multi-model, mixed-Chinese classification model (MCCM) based on BERT (MCCM-BERT) to process Chinese text-classification tasks. The experimental results show that the proposed MCCM BERT model outperforms BERT in text classification tasks, especially in Chinese long text classification, with an accuracy improvement of up to 2.28%.","PeriodicalId":230499,"journal":{"name":"2022 IEEE International Conference on Networking, Sensing and Control (ICNSC)","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Networking, Sensing and Control (ICNSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNSC55942.2022.10004130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Text classification is an almost unavoidable process in natural language processing and has a wide range of application scenarios in industry. Although many existing methods can achieve superior classification results, raising the effect of text classification not only poses a great challenge, but also provides a longitudinal study of technological improvement. Based on the pre-trained bidirectional encoder representations from transformer (BERT) model and in-depth research on deep learning, we propose a multi-model, mixed-Chinese classification model (MCCM) based on BERT (MCCM-BERT) to process Chinese text-classification tasks. The experimental results show that the proposed MCCM BERT model outperforms BERT in text classification tasks, especially in Chinese long text classification, with an accuracy improvement of up to 2.28%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用BERT优化改进多模型混合中文长文本分类
文本分类是自然语言处理中几乎不可避免的一个过程,在工业中有着广泛的应用场景。虽然现有的许多方法都能取得优异的分类效果,但提高文本分类的效果不仅是一个巨大的挑战,而且提供了一个技术改进的纵向研究。基于预训练的双向编码器表示(BERT)模型和对深度学习的深入研究,提出了一种基于BERT的多模型混合中文分类模型(MCCM-BERT)来处理中文文本分类任务。实验结果表明,本文提出的MCCM BERT模型在文本分类任务中优于BERT,特别是在中文长文本分类中,准确率提高了2.28%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High-dimensional Feature Selection in Classification: A Length-Adaptive Evolutionary Approach SFME: Score Fusion from Multiple Experts for Long-tailed Recognition Attention and Cost-Sensitive Graph Neural Network for Imbalanced Node Classification Conditioning Customers' Product Reviews for Accurate Classification Performance Constraint Programming for Modeling and Solving a Hybrid Flow Shop Scheduling Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1