A feature-based tracking algorithm for vehicles in intersections

N. Saunier, T. Sayed
{"title":"A feature-based tracking algorithm for vehicles in intersections","authors":"N. Saunier, T. Sayed","doi":"10.1109/CRV.2006.3","DOIUrl":null,"url":null,"abstract":"Intelligent Transportation Systems need methods to automatically monitor the road traffic, and especially track vehicles. Most research has concentrated on highways. Traffic in intersections is more variable, with multiple entrance and exit regions. This paper describes an extension to intersections of the feature-tracking algorithm described in [1]. Vehicle features are rarely tracked from their entrance in the field of view to their exit. Our algorithm can accommodate the problem caused by the disruption of feature tracks. It is evaluated on video sequences recorded on four different intersections.","PeriodicalId":369170,"journal":{"name":"The 3rd Canadian Conference on Computer and Robot Vision (CRV'06)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"250","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 3rd Canadian Conference on Computer and Robot Vision (CRV'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV.2006.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 250

Abstract

Intelligent Transportation Systems need methods to automatically monitor the road traffic, and especially track vehicles. Most research has concentrated on highways. Traffic in intersections is more variable, with multiple entrance and exit regions. This paper describes an extension to intersections of the feature-tracking algorithm described in [1]. Vehicle features are rarely tracked from their entrance in the field of view to their exit. Our algorithm can accommodate the problem caused by the disruption of feature tracks. It is evaluated on video sequences recorded on four different intersections.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于特征的交叉口车辆跟踪算法
智能交通系统需要自动监控道路交通,特别是跟踪车辆的方法。大多数研究都集中在高速公路上。十字路口的交通变化较大,有多个出入口区域。本文描述了[1]中描述的特征跟踪算法对交点的扩展。车辆特征很少被跟踪,从他们的入口在视野中,他们的出口。我们的算法可以适应特征轨迹中断引起的问题。对在四个不同路口记录的视频序列进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Image Classification and Retrieval using Correlation Photometric Stereo with Nearby Planar Distributed Illuminants Evolving a Vision-Based Line-Following Robot Controller Line Extraction with Composite Background Subtract The Nomad 200 and the Nomad SuperScout: Reverse engineered and resurrected
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1