Large-scale compute-intensive analysis via a combined in-situ and co-scheduling workflow approach

Christopher M. Sewell, K. Heitmann, H. Finkel, G. Zagaris, S. Parete-Koon, P. Fasel, A. Pope, N. Frontiere, Li-Ta Lo, O. E. Messer, S. Habib, J. Ahrens
{"title":"Large-scale compute-intensive analysis via a combined in-situ and co-scheduling workflow approach","authors":"Christopher M. Sewell, K. Heitmann, H. Finkel, G. Zagaris, S. Parete-Koon, P. Fasel, A. Pope, N. Frontiere, Li-Ta Lo, O. E. Messer, S. Habib, J. Ahrens","doi":"10.1145/2807591.2807663","DOIUrl":null,"url":null,"abstract":"Large-scale simulations can produce hundreds of terabytes to petabytes of data, complicating and limiting the efficiency of workflows. Traditionally, outputs are stored on the file system and analyzed in post-processing. With the rapidly increasing size and complexity of simulations, this approach faces an uncertain future. Trending techniques consist of performing the analysis in-situ, utilizing the same resources as the simulation, and/or off-loading subsets of the data to a compute-intensive analysis system. We introduce an analysis framework developed for HACC, a cosmological N-body code, that uses both in-situ and co-scheduling approaches for handling petabyte-scale outputs. We compare different analysis set-ups ranging from purely off-line, to purely in-situ to in-situ/co-scheduling. The analysis routines are implemented using the PISTON/VTK-m framework, allowing a single implementation of an algorithm that simultaneously targets a variety of GPU, multi-core, and many-core architectures.","PeriodicalId":117494,"journal":{"name":"SC15: International Conference for High Performance Computing, Networking, Storage and Analysis","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SC15: International Conference for High Performance Computing, Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2807591.2807663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

Large-scale simulations can produce hundreds of terabytes to petabytes of data, complicating and limiting the efficiency of workflows. Traditionally, outputs are stored on the file system and analyzed in post-processing. With the rapidly increasing size and complexity of simulations, this approach faces an uncertain future. Trending techniques consist of performing the analysis in-situ, utilizing the same resources as the simulation, and/or off-loading subsets of the data to a compute-intensive analysis system. We introduce an analysis framework developed for HACC, a cosmological N-body code, that uses both in-situ and co-scheduling approaches for handling petabyte-scale outputs. We compare different analysis set-ups ranging from purely off-line, to purely in-situ to in-situ/co-scheduling. The analysis routines are implemented using the PISTON/VTK-m framework, allowing a single implementation of an algorithm that simultaneously targets a variety of GPU, multi-core, and many-core architectures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
结合原位和协同调度工作流方法的大规模计算密集型分析
大规模模拟可以产生数百tb到pb的数据,使工作流程变得复杂并限制了其效率。传统上,输出存储在文件系统中,并在后处理中进行分析。随着模拟的规模和复杂性的迅速增加,这种方法面临着不确定的未来。趋势技术包括在现场执行分析,利用与模拟相同的资源,和/或将数据子集卸载到计算密集型分析系统。我们介绍了为HACC开发的分析框架,HACC是一种宇宙学n体代码,它使用原位和协同调度方法来处理pb级输出。我们比较了不同的分析设置,从纯离线,到纯原位,再到原位/协同调度。分析例程使用活塞/VTK-m框架实现,允许一个算法的单一实现,同时针对各种GPU,多核和多核架构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal scheduling of in-situ analysis for large-scale scientific simulations Monetary cost optimizations for MPI-based HPC applications on Amazon clouds: checkpoints and replicated execution IOrchestra: supporting high-performance data-intensive applications in the cloud via collaborative virtualization An input-adaptive and in-place approach to dense tensor-times-matrix multiply Scalable sparse tensor decompositions in distributed memory systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1