Residual MBConv Submanifold Module for 3D LiDAR-based Object Detection

Lie Guo, Liang Huang, Yibing Zhao
{"title":"Residual MBConv Submanifold Module for 3D LiDAR-based Object Detection","authors":"Lie Guo, Liang Huang, Yibing Zhao","doi":"10.1109/iv51971.2022.9827381","DOIUrl":null,"url":null,"abstract":"In LiDAR-based point cloud, objects are always represented as 3D bounding boxes with direction. LiDAR-based object detection task is similar to image-based task but comes with additional challenges. In LiDAR-based detection for autonomous vehicles, the size of 3D object is significant smaller compared with size of input scene represented by point cloud, thus conventional 3D backbones cannot effectively preserve detail geometric information of object with only a few points. To resolve this problem, this paper presents a MBConv Submanifold module, which is simple and effective for voxel-based detector from point cloud. The novel convolution architecture introduces inverted bottleneck and residual connection into 3D sparse backbone, which enable detector to learn high dimension feature from point cloud. Experiments shows that MBConv Submanifold module bring consistent improvement over the baseline method: MBConv Submanifold achieves the AP of 68.03% and 54.74% in the moderate cyclist and pedestrian category on the KITTI validation benchmark, surpass the baseline method significantly. Our code and pretrained models are available at: https://github.com/s1mpleee/ResMBSubmanifold.","PeriodicalId":184622,"journal":{"name":"2022 IEEE Intelligent Vehicles Symposium (IV)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iv51971.2022.9827381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In LiDAR-based point cloud, objects are always represented as 3D bounding boxes with direction. LiDAR-based object detection task is similar to image-based task but comes with additional challenges. In LiDAR-based detection for autonomous vehicles, the size of 3D object is significant smaller compared with size of input scene represented by point cloud, thus conventional 3D backbones cannot effectively preserve detail geometric information of object with only a few points. To resolve this problem, this paper presents a MBConv Submanifold module, which is simple and effective for voxel-based detector from point cloud. The novel convolution architecture introduces inverted bottleneck and residual connection into 3D sparse backbone, which enable detector to learn high dimension feature from point cloud. Experiments shows that MBConv Submanifold module bring consistent improvement over the baseline method: MBConv Submanifold achieves the AP of 68.03% and 54.74% in the moderate cyclist and pedestrian category on the KITTI validation benchmark, surpass the baseline method significantly. Our code and pretrained models are available at: https://github.com/s1mpleee/ResMBSubmanifold.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于三维激光雷达的目标检测残差MBConv子流形模块
在基于激光雷达的点云中,物体总是被表示为有方向的三维边界框。基于激光雷达的目标检测任务类似于基于图像的任务,但存在额外的挑战。在基于lidar的自动驾驶汽车检测中,三维物体的大小明显小于点云表示的输入场景的大小,传统的三维骨架不能有效地保留只有少量点的物体的细节几何信息。为了解决这一问题,本文提出了一种简单有效的基于体素的点云检测MBConv子流形模块。新颖的卷积架构将倒瓶颈和残差连接引入到三维稀疏主干中,使检测器能够从点云中学习高维特征。实验表明,MBConv Submanifold模块较基线方法取得了一致的改进:在KITTI验证基准上,MBConv Submanifold在中度骑行者和行人类别上的AP分别达到68.03%和54.74%,明显优于基线方法。我们的代码和预训练模型可在:https://github.com/s1mpleee/ResMBSubmanifold。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic Conflict Mitigation for Cooperative Driving Control of Intelligent Vehicles Detecting vehicles in the dark in urban environments - A human benchmark A Sequential Decision-theoretic Method for Detecting Mobile Robots Localization Failures Scene Spatio-Temporal Graph Convolutional Network for Pedestrian Intention Estimation What Can be Seen is What You Get: Structure Aware Point Cloud Augmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1