Favor: fine-grained video rate adaptation

Jian He, M. Qureshi, L. Qiu, Jin Li, Feng Li, Lei Han
{"title":"Favor: fine-grained video rate adaptation","authors":"Jian He, M. Qureshi, L. Qiu, Jin Li, Feng Li, Lei Han","doi":"10.1145/3204949.3204957","DOIUrl":null,"url":null,"abstract":"Video rate adaptation has large impact on quality of experience (QoE). However, existing video rate adaptation is rather limited due to a small number of rate choices, which results in (i) under-selection, (ii) rate fluctuation, and (iii) frequent rebuffering. Moreover, selecting a single video rate for a 360° video can be even more limiting, since not all portions of a video frame are equally important. To address these limitations, we identify new dimensions to adapt user QoE - dropping video frames, slowing down video play rate, and adapting different portions in 360° videos. These new dimensions along with rate adaptation give us a more fine-grained adaptation and significantly improve user QoE. We further develop a simple yet effective learning strategy to automatically adapt the buffer reservation to avoid performance degradation beyond optimization horizon. We implement our approach Favor in VLC, a well known open source media player, and demonstrate that Favor on average out-performs Model Predictive Control (MPC), rate-based, and buffer-based adaptation for regular videos by 24%, 36%, and 41%, respectively, and 2X for 360° videos.","PeriodicalId":141196,"journal":{"name":"Proceedings of the 9th ACM Multimedia Systems Conference","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th ACM Multimedia Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3204949.3204957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Video rate adaptation has large impact on quality of experience (QoE). However, existing video rate adaptation is rather limited due to a small number of rate choices, which results in (i) under-selection, (ii) rate fluctuation, and (iii) frequent rebuffering. Moreover, selecting a single video rate for a 360° video can be even more limiting, since not all portions of a video frame are equally important. To address these limitations, we identify new dimensions to adapt user QoE - dropping video frames, slowing down video play rate, and adapting different portions in 360° videos. These new dimensions along with rate adaptation give us a more fine-grained adaptation and significantly improve user QoE. We further develop a simple yet effective learning strategy to automatically adapt the buffer reservation to avoid performance degradation beyond optimization horizon. We implement our approach Favor in VLC, a well known open source media player, and demonstrate that Favor on average out-performs Model Predictive Control (MPC), rate-based, and buffer-based adaptation for regular videos by 24%, 36%, and 41%, respectively, and 2X for 360° videos.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优点:细粒度视频速率适应
视频速率适应对视频体验质量有很大的影响。然而,由于可供选择的速率很少,现有的视频速率适应相当有限,这导致(一)选择不足,(二)速率波动,以及(三)频繁重新缓冲。此外,为360°视频选择单一视频速率可能会更加受限,因为并非视频帧的所有部分都同样重要。为了解决这些限制,我们确定了新的维度来适应用户QoE——视频帧下降、视频播放速率减慢以及在360°视频中适应不同的部分。这些新的维度以及速率适应为我们提供了更细粒度的适应,并显著提高了用户QoE。我们进一步开发了一种简单而有效的学习策略来自动适应缓冲区保留,以避免超出优化范围的性能下降。我们在VLC(一个著名的开源媒体播放器)中实现了我们的方法Favor,并证明了Favor在常规视频中平均优于模型预测控制(MPC)、基于速率和基于缓冲的自适应,分别为24%、36%和41%,对于360°视频则为2X。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual object tracking in a parking garage using compressed domain analysis ISIFT VideoNOC OpenCV.js: computer vision processing for the open web platform Subdiv17
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1