Analyzing Skin Disease Using XCNN (eXtended Convolutional Neural Network)

Ashish Tripathi, Ashutosh Kumar Singh, Adarsh Singh, Arjun Choudhary, K. Pareek, K. Mishra
{"title":"Analyzing Skin Disease Using XCNN (eXtended Convolutional Neural Network)","authors":"Ashish Tripathi, Ashutosh Kumar Singh, Adarsh Singh, Arjun Choudhary, K. Pareek, K. Mishra","doi":"10.4018/ijssci.309708","DOIUrl":null,"url":null,"abstract":"Skin disease is one of the major concerns for clinicians and researchers. Fungus, germs, allergies, and viruses are the main causes of skin diseases. There has always been unsaid competition between conventional and advanced computing-based techniques, and with these new techniques, cost of treatment is also being reduced drastically. In this paper, a deep learning-based model named eXtended Convolutional Neural Network (XCNN) has been proposed to classify three types of skin diseases (i.e., acne, rosacea, and melanoma). XCNN is easy-to-use, economic, and accurate. It will help clinicians to identify and categorize such diseases at the initial stage through automated screening. The proposed work is designed for multi-classification that takes digital images and applies XCNN to identify the type of disease. The model has been built on the dataset of the various skin disease images. It gives 95.67% accuracy in recognizing the diseases with improved recall, f1-score, and precision values compared to other state-of-the-art models.","PeriodicalId":432255,"journal":{"name":"Int. J. Softw. Sci. Comput. Intell.","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Softw. Sci. Comput. Intell.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijssci.309708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Skin disease is one of the major concerns for clinicians and researchers. Fungus, germs, allergies, and viruses are the main causes of skin diseases. There has always been unsaid competition between conventional and advanced computing-based techniques, and with these new techniques, cost of treatment is also being reduced drastically. In this paper, a deep learning-based model named eXtended Convolutional Neural Network (XCNN) has been proposed to classify three types of skin diseases (i.e., acne, rosacea, and melanoma). XCNN is easy-to-use, economic, and accurate. It will help clinicians to identify and categorize such diseases at the initial stage through automated screening. The proposed work is designed for multi-classification that takes digital images and applies XCNN to identify the type of disease. The model has been built on the dataset of the various skin disease images. It gives 95.67% accuracy in recognizing the diseases with improved recall, f1-score, and precision values compared to other state-of-the-art models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于扩展卷积神经网络的皮肤病分析
皮肤病是临床医生和研究人员关注的主要问题之一。真菌、细菌、过敏和病毒是引起皮肤病的主要原因。传统技术和先进的计算技术之间一直存在着不言而喻的竞争,有了这些新技术,治疗成本也大大降低了。本文提出了一种基于深度学习的扩展卷积神经网络(eXtended Convolutional Neural Network, XCNN)模型,用于对痤疮、酒渣鼻、黑色素瘤三种皮肤病进行分类。XCNN易于使用,经济,准确。它将帮助临床医生通过自动筛查在初始阶段识别和分类这类疾病。提出的工作是针对采用数字图像并应用XCNN识别疾病类型的多重分类而设计的。该模型建立在各种皮肤病图像的数据集上。与其他最先进的模型相比,它在识别疾病方面的准确率为95.67%,召回率、f1分数和精度值都有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Knowledge Discovery of Hospital Medical Technology Based on Partial Ordered Structure Diagrams Artificial Intelligence Techniques to improve cognitive traits of Down Syndrome Individuals: An Analysis TA-WHI: Text Analysis of Web-Based Health Information Detection of Distributed Denial of Service (DDoS) Attacks Using Computational Intelligence and Majority Vote-Based Ensemble Approach Model-Based Method for Optimisation of an Adaptive System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1