Sector Based Linear Regression, a New Robust Method for the Multiple Linear Regression

G. Nagy
{"title":"Sector Based Linear Regression, a New Robust Method for the Multiple Linear Regression","authors":"G. Nagy","doi":"10.14232/actacyb.23.4.2018.3","DOIUrl":null,"url":null,"abstract":"This paper describes a new robust multiple linear regression method, which based on the segmentation of the N dimensional space to N+1 sector. An N dimensional regression plane is located so that the half (or other) part of the points are under this plane in each sector. This article also presents a simple algorithm to calculate the parameters of this regression plane. This algorithm is scalable well by the dimension and the count of the points, and capable to calculation with other (not 0.5) quantiles. This paper also contains some studies about the described method, which analyze the result with different datasets and compares to the linear least squares regression. Sector Based Linear Regression (SBLR) is the multidimensional generalization of the mathematical background of a point cloud processing algorithm called Fitting Disc method, which has been already used in practice to process LiDAR data. A robust regression method can be used also in many other fields.","PeriodicalId":187125,"journal":{"name":"Acta Cybern.","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Cybern.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14232/actacyb.23.4.2018.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper describes a new robust multiple linear regression method, which based on the segmentation of the N dimensional space to N+1 sector. An N dimensional regression plane is located so that the half (or other) part of the points are under this plane in each sector. This article also presents a simple algorithm to calculate the parameters of this regression plane. This algorithm is scalable well by the dimension and the count of the points, and capable to calculation with other (not 0.5) quantiles. This paper also contains some studies about the described method, which analyze the result with different datasets and compares to the linear least squares regression. Sector Based Linear Regression (SBLR) is the multidimensional generalization of the mathematical background of a point cloud processing algorithm called Fitting Disc method, which has been already used in practice to process LiDAR data. A robust regression method can be used also in many other fields.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于扇区的线性回归——一种新的鲁棒多元线性回归方法
本文提出了一种新的基于N维空间分割到N+1扇区的鲁棒多元线性回归方法。一个N维的回归平面被定位,使得点的一半(或其他)部分在每个扇区的这个平面下。本文还提出了一种计算该回归平面参数的简单算法。该算法通过点的维度和计数进行了很好的扩展,并且能够使用其他(非0.5)分位数进行计算。本文还对所描述的方法进行了一些研究,分析了不同数据集的结果,并与线性最小二乘回归进行了比较。基于扇区的线性回归(Sector Based Linear Regression, SBLR)是一种点云处理算法拟合盘(Fitting Disc)的数学背景的多维推广,该算法已经在激光雷达数据处理中得到了应用。鲁棒回归方法也可用于许多其他领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Proving the Stability of the Rolling Navigation Inverses of Rational Functions Quantification of Time-Domain Truncation Errors for the Reinitialization of Fractional Integrators On Some Convergence Properties for Finite Element Approximations to the Inverse of Linear Elliptic Operators The Inventory Control Problem for a Supply Chain With a Mixed Type of Demand Uncertainty
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1